Because energy is needed to alive so when glucose goes into oxygen cells it provides energy in the form of Atp
I am attaching a picture cause I cannot write it directly
Hope it helps
Plz mark as brainliest
Answer : The value of Ka for acetic acid is, 
Explanation :
The chemical formula of acetic acid is,
.
The chemical equilibrium reaction will be:

Given:
pH = 2.96
First we have to calculate the concentration of hydrogen ion.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
![2.96=-\log [H^+]](https://tex.z-dn.net/?f=2.96%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=1.096\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.096%5Ctimes%2010%5E%7B-3%7DM)
That means,
![[H^+]=[CH_3COO^-]=1.096\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BCH_3COO%5E-%5D%3D1.096%5Ctimes%2010%5E%7B-3%7DM)
![[CH_3COOH]=0.0602-(1.096\times 10^{-3})=0.0591M](https://tex.z-dn.net/?f=%5BCH_3COOH%5D%3D0.0602-%281.096%5Ctimes%2010%5E%7B-3%7D%29%3D0.0591M)
The expression for reaction is:
![K_a=\frac{[CH_3COO^-][H^+]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BCH_3COO%5E-%5D%5BH%5E%2B%5D%7D%7B%5BCH_3COOH%5D%7D)


Thus, the value of Ka for acetic acid is, 
40.0mL(1 L/1000 mL) = 0.040 L
<span>then plug into the formula M = moles/liters </span>
<span>0.035 M = moles/ 0.040L </span>
<span>multipy both sides by 0.040L, and you get 0.0014 moles </span>
<span>so the answer is 1</span>