1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
3 years ago
8

The Earth moving round the Sun in a circular orbit is acted upon by a

Physics
1 answer:
zalisa [80]3 years ago
3 0
No I do not agree. It is because work is done when force acting o a body displace or covers certain displacement in the direction of force applied .
You might be interested in
It is necessary to determine the specific heat of an unknown object. The mass of the object is 201.0 g. It is determined experim
navik [9.2K]
Mass = 0.201kg
Energy = 15J
temperature change = 10C

Energy(E) = mass(m) × specific heat capacity(c) × temperature change(θ)

we can rearrange this to make specific heat capacity the subject

c =\frac{E}{m\theta}

c =\frac{15}{2.01}
c =7.46268657

6 0
3 years ago
Read 2 more answers
A sinusoidal voltage is given by the expression ????(????)=20cos(5π×103 ????+60°) V. Determine its (a) frequency in hertz, (b) p
MA_775_DIABLO [31]

<em>There are some placeholders in the expression, but they can be safely assumed</em>

Answer:

(a) f=1617.9\ Hz

(b) T=0.618\ ms

(c) A=20 \ Volts

(d) \varphi=60^o

Explanation:

<u>Sinusoidal Waves </u>

An oscillating wave can be expressed as a sinusoidal function as follows

V(t)&=A\cdot \sin(2\pi ft+\varphi )

Where

A=Amplitude

f=frequency

\varphi=Phase\  angle

The voltage of the question is the sinusoid expression  

V(t)=20cos(5\pi\times 103t+60^o)

(a) By comparing with the general formula we have

f=5\pi\times 103=1617.9\ Hz

\boxed{f=1617.9\ Hz}

(b) The period is the reciprocal of the frequency:

\displaystyle T=\frac{1}{f}

\displaystyle T=\frac{1}{1617.9\ Hz}=0.000618\ sec

Converting to milliseconds

\boxed{T=0.618\ ms}

(c) The amplitude is

\boxed{A=20 \ Volts}

(d) Phase angle:

\boxed{\varphi=60^o}

4 0
3 years ago
Alien A lifts a 500-newton child from the floor to a height of 0.40 meters in 2 seconds
vivado [14]
Strong alien you got there good luck bud you never asked a question
4 0
3 years ago
Which definition best explains coping strategy? the way a person handles an abusive relationship the thoughts and actions used t
Alina [70]

Answer:

it is B

Explanation:

just took quiz

5 0
3 years ago
Read 2 more answers
A dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.0 m/s.
SVEN [57.7K]

Answer:

a) Knowns, initial speed v_{i}=13.0 m/s, final speed v_{f}=0 m/s and gravity due it is a constant g=9.8m/s^{2}

b) The maximum high reached by the dolphin is y_{max}=8.62 m

c) Total time is t=2.65s

Explanation:

a) First of all the initial speed is given at the start of the problem, gravity is constant and final speed is known any object thrown straight up reaches its max high at 0m/s speed.

b) Second, now that we know final speed we use v_{f} =v_{i}-gt, as we clear for t=\frac{v_{i}-v_{f} }{g}=\frac{20.0m/s}{9.8m/s^{2} }=1.32 s.

Then we use y=v_{i}t-\frac{1}{2} gt^{2}=(20.0m/s)(1.32s)-\frac{1}{2} (9.8m/s^{2} ) (1.32s)^{2}  =8.62m

c)Third, finally we can use y=v_{i}t-\frac{1}{2} gt^{2}, as we know y=0m when the dolphin fall into the water again and v_{i} =13.0m/s, then we have 0=(13m/s)t-\frac{1}{2} (9.8m/s^{2}  )t^{2} is a quadratic form 0=t(13.0-4.9t) so we have t_{i}=0s and t_{f}=\frac{13}{4.90}  =2.65s

6 0
3 years ago
Other questions:
  • The tenancy of a moving object to continue moving in a strait line or a stationary object to remain in place is called
    13·1 answer
  • A student was producing 75 watts of power while applying a constant force of 225 newtons to slide a box of books 2.0 meters acro
    10·1 answer
  • If We Start With 48 Atoms Of A Radioactive Substance, How Many Would Remain After One Half-life?
    15·1 answer
  • Unscramble acnsrl spgei
    11·1 answer
  • Give a real life example in which two objects are moving at a constant speed but have different velocities.
    12·2 answers
  • What is the frequency of a wave that has a speed of 8 m/s and a wavelength of 2.0 m?
    9·2 answers
  • What’s the first step you would take to build a voltaic cell?
    9·1 answer
  • Write the energy conversion when a moving car braking to stop completely​
    5·1 answer
  • Extremely confused, please help
    15·1 answer
  • A 350-g mass is attached to a spring whose spring constant is 64 N/m. Its maximum acceleration is 5.3 m/s2. What is the frequenc
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!