Answer:
(a) ΔU=747J
(b) γ=1.3
Explanation:
For (a) change in internal energy
According to first law of thermodynamics the change in internal energy is given as
ΔU=Q-W
Substitute the given values
ΔU=970J-223J
ΔU=747J
For(b) γ for the gas.
We can calculate γ by ratio of heat capacities of the gas
γ=Cp/Cv
Where Cp is the molar heat capacity at constant pressure
Cv is the molar heat capacity at constant volume
To calculate γ we first need to find Cp and Cv
So
For Cp
As we know
Q=nCpΔT
Cp=(Q/nΔT)
From relation of Cv and Cp we know that
Cp=Cv+R
Where R is gas constant equals to 8.314J/mol.K
So
So
γ=Cp/Cv
γ=[(37J/mol.K) / (28.687J/mol.K)]
γ=1.3
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
Explanation:
We know that Impulse = force x time
impulse = change in momentum
change in momentum = force x time
Force F = .285 t -.46t²
Since force is variable
change in momentum = ∫ F dt where F is force
= ∫ .285ti - .46t²j dt
= .285 t² / 2i - .46 t³ / 3 j
When t = 1.9
change in momentum = .285 x 1.9² /2 i - .46 x 1.9³ / 3 j
= .514i - 1.05 j
final momentum
= - 3.1 i + 3.9j +.514i - 1.05j
= - 2.586 i + 2.85j
x component = - 2.586
y component = 2.85
J can get answer on this way:
Ek=m*V*V/2= (24kg*2m/s*2m/s)/2=48 Ј
Explanation:
In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity.
Formula
Newton's Second Law
F = m * a
F = force
m = mass of an object
a = acceleration