1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
2 years ago
9

A freezer compartment consists of a cubical cavity that is 2 m on a side. Assume the bottom to be perfectly Problems 49 CH001.qx

d 2/24/11 12:03 PM Page 49 insulated. What is the minimum thickness of styrofoam insulation (k 0.030 W/m K) that must be applied to the top and side walls to ensure a heat load of less than 500 W, when the inner and outer surfaces are 10 and 35 C
Engineering
1 answer:
marusya05 [52]2 years ago
3 0

Answer:

30 mm is the minimum thickness that must be applied.

Explanation:

Given the data in the question;

Using Fourier's equation. the heat rate is  

q = kA(ΔT/Δx)

where

A is the surface area, we must consider all surfaces through which the heat can dissipate through

i.e 2×2 for one wall gives you 4m²,

there are 5 walls, so we will  have 20m² for surface area.

k is thermal conductivity of the styrofoam ( 0.030 W/m K)    

q is the heat loss (500 W  )

ΔT is the Temperature difference ( 35 - 10) = 25°C

Δx  = ?

So we substitute

500 = (0.030)(20)(25/Δx)

500 = 0.6 (25/Δx)

500 = 15 / Δx

Δx = 15 / 500

Δx = 0.03 m = 30 mm

Therefore, 30 mm is the minimum thickness that must be applied.

You might be interested in
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
A police officer in a patrol car parked in a 70 km/h speed zone observes a passing automobile traveling at a slow, constant spee
Ludmilka [50]

Answer:

S = 0.5 km

velocity of motorist = 42.857 km/h

Explanation:

given data

speed  = 70 km/h

accelerates uniformly = 90 km/h

time = 8 s

overtakes motorist =  42 s

solution

we know  initial velocity u1 of police = 0

final velocity u2 = 90 km/h = 25 mps

we apply here equation of motion

u2 = u1 + at  

so acceleration a will be

a = \frac{25-0}{8}

a = 3.125  m/s²

so

distance will be

S1 = 0.5 × a × t²

S1 = 100 m = 0.1 km

and

S2 = u2 ×  t

S2 = 25  × 16

S2 = 400 m = 0.4 km  

so total distance travel by police

S = S1 + S2

S = 0.1 + 0.4

S = 0.5 km

and

when motorist travel with  uniform velocity

than total time = 42 s

so velocity of motorist will be

velocity of motorist = \frac{S}{t}

velocity of motorist =  \frac{500}{42}  

velocity of motorist = 42.857 km/h

3 0
3 years ago
Vehicles begin to arrive at a parking lot at 8:10 am at a constant rate of 6 veh/min until 8:25 am. There is no arrival from 8:2
tresset_1 [31]

1.i am superman

2.175 175 175

3.em dilisues

4.bye classmate magbabalik pa ako

8 0
2 years ago
Alternating current flows in___ direction(s) and direct current flows in___direction(s)
Oduvanchick [21]

Answer:

<u><em>both, one</em></u>

Explanation:

<em>Alternating current flows in both directions and direct current flows in one  direction.</em>

<em></em>

<em>Hope it helps.</em>

<em>;)</em>

<em><3</em>

8 0
2 years ago
A long, horizontal, pressurized hot water pipe of 15cm diameter passes through a room where the air temperature is 24degree C. T
solmaris [256]

Answer:

Rate of heat transfer to the room air per meter of pipe length equals 521.99 W/m

Explanation:

Since it is given that the radiation losses from the pipe are negligible thus the only mode of heat transfer will be by convection.

We know that heat transfer by convection is given by

\dot{Q}=hA(T-T_{\infty })

where,

h = heat transfer coefficient = 10.45 W/m^{2}K (free convection in air)

A = Surface Area of the pipe

Applying the given values in the above formula we get

\dot{Q}=10.45\times \pi DL\times (130+273-(24+273))\\\\\frac{\dot{Q}}{L}=10.45\times 0.15\times \pi \times (130-24)\\\\\frac{\dot{Q}}{L}=521.99W/m

5 0
3 years ago
Other questions:
  • we want to make a schottky diode on one surface of an n-type semiconductor, and an ohmic contact on the other side. the electron
    10·1 answer
  • Occurs between a tire on a vehicle and the roadway when a wall of water separates the tire from
    15·1 answer
  • If the 1550-lb boom AB, the 190-lb cage BCD, and the 169-lb man have centers of gravity located at points G1, G2 and G3, respect
    11·1 answer
  • A long, cylindrical, electrical heating element of diameter 10 mm, thermal conductivity 240 W/m·K, density 2700 kg/m3, and speci
    10·1 answer
  • Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
    11·1 answer
  • B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
    8·1 answer
  • BCC lithium has a lattice parameter of 3.5089 3 10–8 cm and contains one vacancy per 200 unit cells. Calculate (a) the number of
    13·1 answer
  • A 220-V electric heater has two heating coils that can be switched such that either coil can be used independently or the two ca
    15·1 answer
  • Why might a hospital patient prefer to interact with a person instead of robot?
    13·1 answer
  • Advanced manufacturing does NOT serve the transportation, communications, or medical industries. Is this statement TRUE or FALSE
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!