1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
2 years ago
14

What is an OTG USB? how is it useful ​

Engineering
1 answer:
antoniya [11.8K]2 years ago
5 0

Answer:

An OTG or On The Go adapter (sometimes called an OTG cable, or OTG connector) allows you to connect a full sized USB flash drive or USB A cable to your phone or tablet through the Micro USB or USB-C charging port

Explanation:

pls mark brainliest

You might be interested in
Select the correct answer.
boyakko [2]
I think the answer is b
6 0
3 years ago
Read 2 more answers
A fire hose nozzle has a diameter of 1.125 in. According to some fire codes, the nozzle must be capable of delivering at least 2
Furkat [3]

Answer:

P_{1} = 403,708\,kPa\,(58.553\,psi)

Explanation:

Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

\frac{P_{1}}{\rho\cdot g} = \frac{P_{2}}{\rho \cdot g} + \frac{v^{2}}{2\cdot g}

The initial pressure is:

P_{1} = P_{2}+ \frac{1}{2}\cdot \rho v^{2}

The speed at outlet is:

v=\frac{\dot Q}{\frac{\pi}{4}\cdot D^{2}}

v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }

v\approx 24.592\,\frac{m}{s}\,(80.682\,\frac{ft}{s} )

The initial pressure is:

P_{1} = 101.325\times 10^{3}\,Pa+\frac{1}{2}\cdot (1000\,\frac{kg}{m^{3}} )\cdot (24.592\,\frac{m}{s} )^{2}

P_{1} = 403,708\,kPa\,(58.553\,psi)

7 0
3 years ago
Read 2 more answers
What is need for using fins?
antiseptic1488 [7]

Answer: It is a term of heat transfer process in which fins are surface that are the extension of the object to work for the heat exchangers to increase the heat exchanging rate.

 Explanation: Fins are considered to help the heat exchanger surface to lead the process of heat transfer by increasing the are of the surface which is exposed to the surroundings. Fins work really well with materials having high thermal conductivity and will  be more effective. They are preferred because they increase the rate of exchange of heat by increment in the convection.

7 0
3 years ago
Calculate the magnitude of the velocity and the θ angular direction of the block and the bullet together when the 50 g bullet mo
almond37 [142]

Answer:

Magnitude of the velocity = 16.82 m/s

Angular direction, θ = 52.41°

Explanation:

As given ,

mass of bullet, m₁= 50g = 0.05 kg

speed of bullet , u₁ = 600 m/s

mass of the block , m₂ = 4 kg

speed of the block before collision , u₂ = 12 m/s

direction , θ = 30°

Now,

Assume that the combined velocity of bullet and block after collision = v

and the direction = θ

Now, from the conservation of momentum in x - direction :

m₁ u₁ + m₂ u₂ = ( m₁ + m₂ ) vₓ

where v = final velocity after collision

u₁ = initial velocity of bullet before collision = 0

m₁ = mass of the bullet before collision = 0.05 kg

u₂  = velocity of block before collision = 12 cos(30° )

m₂ = mass of block before collision

m₁ + m₂ = combined mass of bullet and block after collision = 0.05 + 4

∴ we get

0.05 (0) + 4(12 cos(30° ) ) = ( 0.05 + 4 ) vₓ

⇒ 0 + 4(6√3) = 4.05 vₓ

⇒24√3 = 4.05 vₓ

⇒vₓ = 10.26 m/s

Now, from the conservation of momentum in y - direction :

m₁ u₁ + m₂ u₂ = ( m₁ + m₂ ) v_{y}

where v = final velocity after collision

u₁= initial velocity of bullet before collision = 600

m₁ = mass of the bullet before collision = 0.05 kg

u₂  = velocity of block before collision = 12 sin(30° )

m₂= mass of block before collision

m₁+ m₂= combined mass of bullet and block after collision = 0.05 + 4

∴ we get

0.05 (600) + 4(12 sin(30° ) ) = ( 0.05 + 4 ) v_{y}

⇒ 30 + 4(6) = 4.05 v_{y}

⇒30 +24 = 4.05 v_{y}

⇒54 = 4.05 v_{y}

⇒v_{y} = 13.33 m/s

Now, the magnitude of the velocity = √vₓ² + v_{y}² = √(10.26)² + (13.33)²

                                                           = √105.26 + 177.68

                                                           = √282.95 = 16.82

The angular direction, θ =  tan^{-1}(\frac{v_{y} }{v_{x} }) =  tan^{-1}(\frac{13.33}{10.26}) = tan^{-1}(1.299) = 52.41°

8 0
3 years ago
I took my dog for a walk, but he wants to go again.
Talja [164]

He probably just like the cool weather or being outside lol

7 0
3 years ago
Other questions:
  • A tire-pressure monitoring system warns you with a dashboard alert when one of your car tires is significantly under-inflated.
    6·1 answer
  • For the following gear train, if the blue gear is moving at 50 rpm, what are the speeds of the other gears?
    14·1 answer
  • Write a function called arraySum() that takes two arguments: an integer array and the number of elements in the array. Have the
    14·1 answer
  • Which part does NOT rotate when the engine is running and the clutch pedal is depressed?
    7·1 answer
  • 3.24 Program: Drawing a half arrow (Java) This program outputs a downwards facing arrow composed of a rectangle and a right tria
    12·1 answer
  • Engineers need to be open-ended when dealing with their designs. Why?
    11·1 answer
  • Fluorescent troffers are a type of _ lighting fixture
    6·1 answer
  • Mnsdcbjksdhkjhvdskjbvfdfkjbcv hjb dfkjbkjfvvfebjkhbvefgjdf
    7·2 answers
  • Describe how to use cleaning tools and equipment safely and properly
    6·1 answer
  • Architecture reflects multidisciplinary
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!