Its 0.001
0.01 x100 = 1mm
0.001x100=0.1mm
0.1=10mm
1m
Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution
Answer:
E= 15 GPa.
Explanation:
Given that
Length ,L = 0.5 m
Tensile stress ,σ = 10.2 MPa
Elongation ,ΔL = 0.34 mm
lets take young modulus = E
We know that strain ε given as



We know that

Therefore the young's modulus will be 15 GPa.
If a controlled input can transfer (alter) the control system's initial states to some other desired states in a finite amount of time, the control system is said to be controllable.
Using Kalman's test, we can determine whether a control system is controllable. The evolution model for the state variables (time-varying unknowns) and the observation model, which connects the observations to the state variables, make up the state space representation of a dynamical system. The capacity to move a system about in its full configuration space using just specific permitted actions is generally referred to as controllability. The precise definition changes slightly depending on the model type or framework used.
Learn more about control here-
brainly.com/question/28540307
#SPJ4
You're welcome lol! !!!!!!!!!!!!!!
:):):):)