Answer:
1.42 KJ
Explanation:
solution:
power in beginning =(1.5 V).(9× A)
= 13.5 mW
after continuous 37 hours it drops to
=(1 V).(9× A)
=9 mW
When the voltage will drop energy will not remain the same but the voltage drop will always remain same if the voltage was drop to for example from 5 V to 4.5 V the drop will remain the same.
37 hours= 37.60.60
=133200 s
w=(9× A×133200 )+
=1.42 KJ
<em>NOTE:</em>
There maybe a calculation error but the method is correct.
Answer:
A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
1) the final temperature is T2 = 876.76°C
2) the final volume is V2 = 24.14 cm³
Explanation:
We can model the gas behaviour as an ideal gas, then
P*V=n*R*T
since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:
P*V^k = constant = C, k= adiabatic coefficient for air = 1.4
then the work will be
W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)
W = (P1*V1/T1)*(T2-T1)/(1-k)
T2 = (1-k)W* T1/(P1*V1) +T1
replacing values (W=-450 J since it is the work done by the gas to the piston)
T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C
the final volume is
TV^(k-1)= constant
therefore
T2/T1= (V2/V1)^(1-k)
V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³
Answer:Yes,266.66 MPa
Explanation:
Given
Yield stress of material =140 MPa
Cross-section of
Force(F)=8 MN
Therefore stress due to this Force()
Since induced stress is greater than Yield stress therefore Plastic deformation occurs