Answer:
Circular tube
Explanation:
Now for better understanding lets take an example
Lets take
Diameter of solid bar=
cm
Outer diameter of tube =6 cm
Inner diameter of tube=2 cm
So from we can say that both tubes have equal cross sectional area.
We know that buckling load is given as
If area moment of inertia(I) is high then buckling load will be high.
We know that area moment of inertia(I)
For circular tube 
For circular bar
Now by putting the values
For circular tube 
For circular bar 
So we can say that for same cross sectional area the area moment of inertia(I) is high for tube as compare to bar.So buckling load will be higher in tube as compare to bar.
Answer:
first is the parentheses, (3+2)=5 next is the exponent 5^2=25, next is the division 5 / 5 = 1, then the multiplication 4*1=4 and then you add 4+25=29. so the answer is 29.
Answer:
ik the answer but I'm busy rn
Answer:
33.56 ft^3/sec.in
Explanation:
Duration = 6 hours
drainage area = 185 mi^2
constant baseflow = 550 cfs
<u>Derive the unit hydrograph using the inverse procedure </u>
first step : calculate for the volume of direct runoff hydrograph using the details in table 2 attached below
Vdrh = sum of drh * duration
= 29700 * 6 hours ( 216000 secs )
= 641,520,000 ft^3.
next step : Calculate the volume of runoff in equivalent depth
Vdrh / Area = 641,520,000 / 185 mi^2
= 1.49 in
Finally derive the unit hydrograph
Unit of hydrograph = drh / volume of runoff in equivalent depth
= 50 ft^3 / 1.49 in = 33.56 ft^3/sec.in