1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
11

A charge q1 of -5.00 x 10^-9 C and a charge q2 of -2.00x 10^-9 C are separated by a distance of 40.0 cm. Find the equilibrium po

sition for a third charge of +15.0x 10^-9 C.
Physics
1 answer:
Blababa [14]3 years ago
5 0

The magnitude of charge on a proton and electron is the same, 1.602 x 10-19 C. Protons are +, and electrons -.

You might be interested in
Juan rides his horse with a constant<br> speed of 18 km/h. How far can he travel<br> in 1/2 hour?
Brut [27]

Answer:

He traveled 9km

Explanation:

To do this problem you need to use the equation which is Speed= distance/time and this problem gives you the speed which is 18 km/h and it gives you the time 1/2 hour so you write the equation 18= d/ 1/2 which his distance is 9km

3 0
3 years ago
What effect do sound waves have on air particles
valkas [14]

Answer:

Sound waves travel at 343 m/s through the air and faster through liquids and solids. The waves transfer energy from the source of the sound, e.g. a drum, to its surroundings. Your ear detects sound waves when vibrating air particles cause your ear drum to vibrate. The bigger the vibrations the louder the sound.

Explanation:

7 0
3 years ago
Are light waves longitudinal or transverse
Marysya12 [62]

Answer:

Transverse

Explanation:

There are two types of waves, according to the direction of their oscillation:

- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves

- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.

Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.

6 0
3 years ago
A 1.4-kg cart is attached to a horizontal spring for which the spring constant is 50 N/m . The system is set in motion when the
marin [14]

Answer:

A)

0.395 m

B)

2.4 m/s

Explanation:

A)

m = mass of the cart = 1.4 kg

k = spring constant of the spring = 50 Nm⁻¹

x = initial position of spring from equilibrium position = 0.21 m

v_{i} = initial speed of the cart = 2.0 ms⁻¹

A = amplitude of the oscillation = ?

Using conservation of energy

Final spring energy = initial kinetic energy + initial spring energy

(0.5) kA^{2} = (0.5) m v_{i}^{2} + (0.5) k x_{i}^{2} \\kA^{2} = m v_{i}^{2} + k x_{i}^{2} \\(50) A^{2} = (1.4) (2.0)^{2} + (50) (0.21)^{2} \\A = 0.395 m

B)

m = mass of the cart = 1.4 kg

k = spring constant of the spring = 50 Nm⁻¹

A = amplitude of the oscillation = 0.395 m

v_{o} = maximum speed at the equilibrium position

Using conservation of energy

Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring

(0.5) m v_{o}^{2} = (0.5) kA^{2}\\m v_{o}^{2} = kA^{2}\\(1.4) v_{o}^{2} = (50) (0.395)^{2}\\v_{o} = 2.4 ms^{-1}

5 0
3 years ago
Read 2 more answers
Which process requires more energy: completely vaporizing 1 kg of saturated liquid water at 1 atm pressure or completely vaporiz
Lilit [14]
The correct answer would be the first option. The process that would need more energy would be vaporizing 1 kg of saturated liquid water at a pressure of 1 atmosphere. This can be seen from the latent heat of vaporization of each system. For the saturated water at 1 atm, the latent heat is equal to 40.7 kJ per mole while, at 8 atm, the latent heat is equal to 36.4 kJ per mole. The latent heat of vaporization is the amount of heat needed in order to vaporize a specific amount of substance without any change in the temperature. As we can observe, more energy is needed by the liquid water at 1 atm. 
7 0
3 years ago
Other questions:
  • 48 grams 12cm^3, what would the density of the material be
    11·1 answer
  • PLEASE HELP!!!
    10·2 answers
  • 1 st QUESTION: In the raisin experiment what was your first step of the scientific method?
    15·1 answer
  • Can a body possess velocity at the same time in horizontal and vertical directions?​
    9·1 answer
  • Two positive charges are equal. Which has more electric potential energy?
    7·2 answers
  • Should athletes be benched if their grades are too low, or should they be allowed to play anyway?
    7·1 answer
  • You are cooking breakfast for yourself and a friend using a 1,140-W waffle iron and a 510-W coffeepot. Usually, you operate thes
    15·1 answer
  • True or false, question in picture,
    10·2 answers
  • Continuous signals are characterized as . signals that are broken up into binary code are characterized as . an am/fm radio is a
    15·1 answer
  • A. The potential energy stored in the compressed spring of a dart gun, with a spring constant of 62.00 N/m, is 0.940 J. Find by
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!