Question: A loader sack of total mass
is l000 grams falls down from
the floor of a lorry 200 cm high
Calculate the workdone by the
gravity of the load.
Answer:
19.6 Joules
Explanation:
Applying
W = mgh........................ Equation 1
Where W = Workdone by gravity on the load, m = mass of the loader sack, h = height, g = acceleration due to gravity
From the question,
Given: m = 1000 grams = (1000/1000) kilogram = 1 kg, h = 200 cm = 2 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
W = (1×2×9.8)
W = 19.6 Joules
Hence the work done by gravity on the load is 19.6 Joules
Answer:
Shiloh dynasty, jucie wrld or xxx or twenty one plot
Explanatio
The sun <u><em>appears</em></u> brighter than any other star.
(It isn't really, but it looks that way because it's much much much much much much closer to us than any other star.)
Answer:
a. Displacement=30²+5²=925= 30.4m
b. Total distance=30m+5m=35m
c. V=s/t. = 30.4/45=0.6m/s
Answer:
Approximately
.
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (
) is equal to
.
There are two half-reactions in this question.
and
. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of
should be positive.
In this case,
is positive only if
is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to
.
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
is the number moles of electrons transferred for each mole of the reaction. In this case the value of
is
as in the half-reactions.
is Faraday's Constant (approximately
.)
.