Great Question! I happened to be a physics nerd!
Answer:
C. Two hydrogen nuclei, each with only one proton, fuse to form deuterium, a form of hydrogen with one proton.
MAKE SURE TO SEE EXPLANATION!
Explanation:
In the core of the Sun, or any other main sequence star, there is no single fusion process. Instead, complex sequences of processes occur to make helium nuclei from hydrogen nuclei (i.e. protons). The proton-proton chain provides for the majority of energy generation in stars with masses less than that of the Sun. One difficulty in creating a helium nucleus (two protons and two neutrons) is that there are only protons to begin with. Some protons must be turned into neutrons in some way. The first step is to combine two protons to form a deuterium nucleus (also known as a deuteron). That's a hefty hydrogen nucleus with one proton and one neutron. Such a proton-proton contact is highly unlikely, and it has never been detected in a laboratory. Fortunately, the Sun's core is incredibly hot and dense, with an incredible number of protons packed inside. Even a low likelihood event will occur every now and again. Along with each deuteron, a positron (an "anti-electron") and a neutrino are created. Because the Sun's core is plasma, there are a lot of free electrons, thus the positron doesn't live long until it and an electron collide and annihilate, resulting in gamma radiation. The deuteron then interacts with a proton to form a helium 3 nucleus. That is a high-probability interaction, and it occurs swiftly. Two helium 3 nuclei join in the third phase to generate a helium 4 ("regular" helium) nucleus and a proton. Branch I of the proton-proton (p-p) chain is responsible for this. Another stage is required because reactions between helium 3 and helium 4 nuclei are possible. There are two conceivable reactions (named Branch II and Branch III), and I'll save you the gory details. It gets much more complicated since theoretical calculations indicate that a reaction between a helium 3 nucleus and a proton is feasible — Branch IV. This reaction has an incredibly low likelihood of occurring, far lower than the Branch I reaction, thus it must be exceedingly rare. The Carbon-Nitrogen-Oxygen (CNO) Cycle is another method for reducing hydrogen to helium. It does not generate much energy in the Sun, but it is the principal energy generation mechanism in larger stars.
Answer:
$900 trillion
Explanation:
If Alaska is 20% of the contiguous US, then the approximate area of interest is ...
1200 miles × 3000 miles = 3.6×10^6 square miles.
The size of a dollar bill is about ...
(6.5 cm)·(15.5 cm) = 100.75 cm^2
One mile is 160,934.4 cm, so 1 square mile is about ...
1 mi^2 = (160,934.4 cm)^2 ≈ 2.59·10^10 cm^2
The number of dollars of interest is then ...
(3.6 · 10^6 mi^2)(2.59 · 10^10 cm^2)/(100.75 cm^2) ≈ 9.3·10^14
≈ 930 × 10^12 . . . dollars
It would cost about 900 trillion dollars to cover the land area of the US in $1 bills.
Answer:
refractive index of the unknown material is 1.33.
Explanation:
μ₁ = 1.21
incidence angle (i) = 41.9°
refraction angle (r) = 37.3°
Let us assume μ be the refractive index of the unknown material
according to snell's law of refraction.
μ₁ sin i = μ₂ sin r
1.21 × sin 41.9° = μ × sin 37.3°
μ = 1.33
hence the refractive index of the unknown material comes out top be 1.33
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3