Answer:
D . Sound energy
Explanation:
When the strings of a violin vibrate it produces sound which is sound energy. Due to the vibration of the strings the air present near the strings also vibrate in resonance with the strings. This compreesion and decompression's produced in the air is nothing but the sound. So the form of energy given off by the vibrating strings of the violin is Sound energy.
The new force would be 1.6 N.
Since the charges multiply as variables (q1)x(q2), then it would simply be double (q1)x(q2), or 1.6.
Answer:
2.25 Ω
Explanation:
Standard equation
V = IR re-arrange to
V /I = R then sub in the values given
9 / 4 = 2.25 Ω
Explanation:
For air, n1 = 1.00003; for water, n2 = 1.3330
Given: θ2 = 30 degrees, then
θ1 = arcsin [(n2/n1) sin θ2]
= arcsin [(1.3330/1.0003) sin (40)]
= 58.93 degrees
Note that since, in this example, light is traveling from a medium of higher density (water; n2 = 1.3330) to a medium of lower density (air; n1 = 1.0003), then n2 > n1, and the angle of refraction (θ1) is larger than the angle of incidence (θ2), thus the light bends away from the normal (in this example, the vertical) as it leaves the water and enters the air.