If F = Gm₁m₂/d², and we change m₁ to 5m₁ and m₂ to 2m₂, then the new magnitude of the gravitational force is
F' = G (5m₁) (2m₂) / d²
F' = 10 Gm₁m₂ / d²
but this is really just F' = 10F. So J is the correct choice.
Answer:
8 Hz
Explanation:
Given that
Standing wave at one end is 24 Hz
Standing wave at the other end is 32 Hz.
Then the frequency of the standing wave mode of a string having a length, l, is usually given as
f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc
Also, another formula is given as
f(m) = m.f(1), where f(1) is the fundamental frequency..
Thus, we could say that
f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)
And as such,
f(1) = 32 - 24
f(1) = 8 Hz
Then, the fundamental frequency needed is 8 Hz
Umm what are you trying to say
Answer:
The starting velocity for ball 1 is 1.00 meter/second. Its ending velocity is 0.25 meter/second.
The change in velocity for ball 1 is 0.25 – 1.00 = -0.75 meter/seconds