The Milky Way galaxy is the one that the sun is a member of, and it contains
our solar system. We're in it, and you can't get much closer than that.
The Milky Way is known to be bigger than your average galaxy, but it's
probably not correct to say that it contains the 'most' stars of any galaxy.
The estimate for the Milky Way is only a few hundred billion stars.
Answer:
<h2>Case i) if

</h2><h2>So initially if the circuit is inductive in nature then its net impedance will decrease after this</h2><h2>Case ii) if

</h2><h2>So initially if the circuit is capacitive in nature then its net impedance will increase after this</h2>
Explanation:
As we know that the impedance of the circuit is given as

when we join another identical capacitor in parallel with previous capacitor in the circuit then we will have for parallel combination

so it is

now we have

Case i) if 
So initially if the circuit is inductive in nature then its net impedance will decrease after this
Case ii) if 
So initially if the circuit is capacitive in nature then its net impedance will increase after this
The zero net electric field point is at a point that is 0.98 m away from 4.7C charge.If a 14C charge is placed at this point then, force acted on the charge placed at this point is equal to zero.
Explanation:
Let at A both net electric field is zero then
At A ,E1=E2
E1=k*Iq1I / (d+x)^2
E2=k*Iq2I /x^2
Equating both
Following your push the ball rolls down the lane at 4.2m/s. What is the net force on the ball as it rolls down the lane at the constant speed?
The Metric, and the US Standard systems. :)