The value of ΔG° at this temperature is -18034.18 J/mol
Calculation,
Given information
formation constant (Kf)= 1.7 × 
Universal gas constant (R) = 8.314 J/K• mol
Temperature = 25° C = 25 °C + 273 = 300 K
Formula used:
ΔG° = -RT㏑Kf
By putting the valur of R,T, Kf we get the value of ΔG°
ΔG° = - 8.314 J/K• mol×300K㏑ 1.7 × 
ΔG° = -2494.2㏑ 1.7 ×
= -18034.18 J/mol
So, change in standard Gibbs's free energy is -18034.18 J/mol
Learn about formation constant
brainly.com/question/14011682
#SPJ4
<u>Answer:</u> The correct option is A) They have fixed energy values.
<u>Explanation:</u>
Electron is one of the sub-atomic particle present around the nucleus of an atom which is negatively charged.
In an atomic model, it is assumed that the electron revolves around the nucleus in discrete orbits having fixed energy levels.
These electrons when jumping from one energy level to another, some amount of radiation is either emitted or absorbed.
These fixed energy levels are given by the Bohr model and thus, the electrons are quantized.
Hence, the correct option is A) They have fixed energy values.
<span>In the electron cloud model, the denser areas represent that there is a great probability that a good number of electrons are ganged up or crowded in that area. The electrons affect the density of some parts of the electron cloud when they condense in those locations.</span>
9.184 liters CH2O at STP
I think this is correct. Good luck