Answer: The ice cube would float on top of the water and the rock would sink to the bottom.
Explanation: The ice cube has a smaller density than the rock which allows the ice cube to float but makes the rock sink to the bottom of the glass of water.
Answer:
For the first situation, we first need to find the mass of the second train car.
In order to do that, we apply the conservation of the amount of movement:

and we have as a result:
m2 = 289.6875
For the second situation, also we will apply the conservation of the amount of movement:

and we have as a result:
V = 2.64 (it is moving to the right)
Answer:
a) 
b) 
c) 
d) 
Explanation:
a) The initial vertical velocity is given by:

Where:
θ: 25°
v: is the magnitude of the speed = 23 m/s

b) The initial horizontal velocity can be calculated as follows:

c) The flight time can be calculated using the following equation:

Where:
x: is the total distance = 42 m

d) The maximum height is given by:
Where:
: is the final vertical velocity =0 (at the maximum heigth)
g: is the gravity = 9.81 m/s²
I hope it helps you!
To solve this problem it is necessary to apply the concepts related to wavelength as a function of speed and frequency. In mathematical terms it can be expressed as

Where,
v = Velocity
f = Frequency
According to our values the frequency (f) is 320Hz and the speed (v) is 339m / s.
Replacing in the given equation we have to,

Therefore the wavelength of this sound wave is 1.06m
Answer:
An opaque object with many closely spaced slits
Explanation:
Diffraction grating is an opaque object which will have many close slits on it
Each slit will allow the light wave pass through it which incident on it.
So here each slit will behave like a secondary source which will transmit the light and the superposition of light is then observed on the screen
These large number of slits on the object is combined known as diffraction grating.
By the superposition of waves due to grating we will have pattern of maximum and minimum intensity on the screen and this intensity if highest at the mid point of screen and then decreases as we move away