Answer:
<u><em>1) if they are moving away from each other it will take 1.43 secs</em></u>
<u><em>2) if they are moving towards each other then it will take 1.11 secs</em></u>
Explanation:
Distance between them is 10 m
Speed ( if they are moving towards each other)= distance/time
time = 10/8+1
time = distance / speed= 10/9= 1.11 secs
if they are moving away from each other than it will take
time = 10/8-1= 10/7= 1.43 secs
Any matter that is a solid<span> has a </span>definite shape<span> and a </span>definite<span> volume. The molecules in a </span>solid<span> are in fixed positions and are close together. Although the molecules can still vibrate, they cannot move from one part of the </span>solid<span> to another part. As a result, a </span>solid does<span> not easily change its </span>shape<span> or its volume</span>
The effect of this problem is that negative particles and positive particles contract to each other caused by electrical force.
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.