Answer:
Explanation:
When we apply a horizontal force of 76 N to a block, the block moves across the floor at a constant speed. So net force on the block is zero .
It implies that a force ( frictional ) acts on it which is equal to 76 N in opposite direction ( friction )
When we apply a greater force on it it starts moving with acceleration .
This time kinetic friction acts on it due to rough ground equal to 76 N .This is limiting friction ( maximum friction )
Net force on the body in later case
= 89 - 76
= 13 N
Force by ground on the block in horizontal direction = 76 N ( FRICTIONAL FORCE )
=
After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer and explanation:
When you are changing a car tire, the most important thing is to keep the total diameter as equal as possible.
The total car tire diameter can be calculated as:

The profile of this tire is 75 (the higher/taller relation), therefore a 5 percent lower profile would be:
pr=0.95·75=71.25
The problem is that the profiles are normalized and the nearest profile available is 70.
If we take a theorical tire with a profile of 71.25:

The theorical tire size should be 205/71 R15.
If we look for a real tire size, we should look for a tire with a diameter nearest to 26.5'' and a profile of 70.
The best option for real tire size is: Tire 225/70 R14 (wheel diameter of 26.4'') or 205/70 R15 (wheel diameter of 26.3'').
Answer:
Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
Explanation:
Given data
Source Frequency fs=600Hz
Length r=1.0m
RPM=100 rpm
The speed of the generator is calculated as:

Substitute the given values

For approaching generator the frequency is calculated as:

On the other hand,for the receding generator,Doppler's effect is expressed as:

Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
Acceleration=velocity/time
acceleration=28/4.22
therefore, acceleration=6.64