Answer:
option (d)
Explanation:
The relation between the rms velocity and the molecular mass is given by
v proportional to \frac{1}{\sqrt{M}} keeping the temperature constant
So for two gases




Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :

So, the hayride will cover a distance of 68.18 m.
No "might<span>". The amount of CO2 in the </span>atmosphere<span> HAS gone up since the start of industrialisation as the result of </span>burning fossil fuels<span>.</span>
Mercury and Venus are therefore closer to each other most of the time. But Earth is the planet closest to Venus. And that's why from here on Earth, Venus looks so big and luminous. Venus is the brightest thing in the night sky after the sun and the moon.