The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
Answer:
His kinetic energy increases, potential energy decreases
The sum of kinetic and potential energy is a constant at any instant before he comes to rest.
Explanation:
Snowboarder is starting from a height and moving to the down direction. As he moves down his velocity increases, we know that kinetic energy is given by the expression , so as he moves his kinetic energy increases.
When the snowboarder is starting his potential energy is maximum(Potential energy = mgh), as he comes down his potential energy decreases.
Based on this we can conclude that the sum of potential energy and kinetic energy is a constant at any instant for a snowboarder before he comes to rest.
mgh+= Constant
Answer:
Energy= 46.08KJ
Explanation:
Given that the power needed to light each bulb is 32W
We know that Power =
The energy needed to light one bulb=
Given time = 1minute = 60 seconds
Energy = =1920J
Therefore energy needed to light one bulb is 1920J
The energy needed to light 24 bulbs = =46080J=46.08KJ
Star 1 - 4 hours right ascension
Star 2 - 3 hours right ascension
Subtracting hours right ascension
4 hours right ascension - 3 hours right ascension = 1 hours right ascension.
Thus,
star 1 will rise 1 hour before star 2