Answer:
A
Explanation:
Kinetic energy must be moving. Potential energy has the ability to move but is not doing so at the moment.
A is likely the answer. But there's lots involved in that kind of motion.
B If the ball is elevated, it implies it is not moving yet. It has potential energy.
C Again, the spring is compressed. It will push something when it moves, but it is not moving yet.
D The load gun's bullet is not moving. It's still potential energy.
E. The mouse trap is set, but it is not moving. When the mouse eats the bait then it's potential energy will transform into kinetic energy.
Answer:
8.9 g/cm^3
Explanation:
density = mass/volume
volume = length * width * height
volume = (8.4 cm)(5.5 cm)(4.6 cm)
volume = 212.52 cm^3
mass = 1896 g
density = (1896 g)/(212.52 cm^3)
density = 8.9 g/cm^3
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Answer:
Here are 5:
Distance from source to receiver
Wind speed and direction
Wind gradients
Temperature gradients
Atmospheric attenuation
and there are many more...
Hope that was helpful.Thank you!!!
Answer:
c
Explanation:
Green house effect:
Temperature of atmosphere is going to increased continuously, because infrared light absorbed by gas .This increased in temperature atmosphere is called green house effect.
The green houses gases are as follows
,Carbon diaoxide,water vapor ,,Carbon diaoxide ,Methane ,,Carbon diaoxide oxide,CFCs ,ozone.
So the option c is correct.