Answer:
Follows are the explanation to this question:
Explanation:
In this solution, it is defined that there are two principal motions for the moon, which are its revolution as well as rotation. In such a movement called revolution, its Moon is relocating around the Earth, in which the approximate movement of the moon from around earth has an average movement of about 13.2° per day, or 92 degrees every week, that's once in 27.3 days.
Answer:
Change in momentum will be -4.4 kgm/sec
So option (A) is correct option
Explanation:
Mass of the ball is given m = 0.10 kg
Initial velocity of ball 
And velocity after rebound 
We have to find the change in momentum
So change in momentum is equal to
( here negative sign shows only direction )
So option (A) will be correct answer
Answer:
The electron’s velocity is 0.9999 c m/s.
Explanation:
Given that,
Rest mass energy of muon = 105.7 MeV
We know the rest mass of electron = 0.511 Mev
We need to calculate the value of γ
Using formula of energy


Put the value into the formula


We need to calculate the electron’s velocity
Using formula of velocity




Put the value into the formula



Hence, The electron’s velocity is 0.9999 c m/s.
The answer is either c or b
At the time that I'll call ' Q ', the height of the stone that was
dropped from the tower is
H = 50 - (1/2 G Q²) ,
and the height of the stone that was tossed straight up
from the ground is
H = 20Q - (1/2 G Q²) .
The stones meet when them's heights are equal,
so that's the time when
<span>50 - (1/2 G Q²) = 20Q - (1/2 G Q²) .
This is looking like it's going to be easy.
Add </span><span>(1/2 G Q²) to each side.
Then it says
50 = 20Q
Divide each side by 20: 2.5 = Q .
And there we are. The stones pass each other
2.5 seconds
after they are simultaneously launched.
</span>