The kelvin temperature/scale i think
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
The distance between the two charges is 
Explanation:
The electrostatic force between two charged objects is given by Coulomb's law:

where:
is the Coulomb's constant
are the charges of the two objects
r is the separation between the two charges
In this problem, we are given the following:



Therefore, we can rearrange the equation to solve for r, the distance between the two charges:

Learn more about electrostatic force:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:
Acceleration a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2
Explanation:
For the truck to accelerate without losing its load.
Acceleration force of truck must be less than or equal to the maximum friction force between the truck bed and the load.
Fa ≤ F(friction)
But;
Fa = mass × acceleration
Fa = ma
ma ≤ F(friction)
a ≤ (F(friction))/m ......1
Given;
Fa = mass × acceleration
Fa = ma
mass m = 800 kg
F(friction) = 2400 N
Substituting the given values into equation 1;
a ≤ F(friction)/m
a ≤ 2400N/800kg
a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2