Answer:
The average kinetic energy of a particle is proportional to the temperature in Kelvin.
Explanation:
The kinetic molecular theory states that particles of matter are in constant motion and collide frequently with each other as well as with the walls of the container.
The collisions between particles are completely elastic. The kinetic energy of the particles of a body depends on the temperature of the body since temperature is defined as a measure of the average kinetic energy of the particles of a body.
Therefore, the average kinetic energy of a particle is proportional to the temperature in Kelvin.
v=fw (Assume for this example w is wavelength). w=v/f. w=100/1000= 0.1 m. The wavelength is 0.1 meters
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
The solution is an alkali.
Usually with the pH value range of 14, substances with pH 7 can be called neutral. Meanwhile substances lower than pH 7 are acids, the lower the pH is, the more acidic it is. Such as cola, it has a pH 2, which is very acidic.
In opposite, the substances with pH over 7 are called alkalis. Again, the larger the pH value is, the more alkaline it is. So pH 13 is a strong alkaline therefore it it corrosive and can clean the toilet well.
Answer:
4 L
Explanation:
Ideal gas law is P1V1T2=P2V2T1
V2=P1V1/P2
T is not necessary to add since it is constant.