1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
15

To see why an MRI utilizes iron to increase the magnetic field created by a coil, calculate the current needed in a 400-loop-per

-meter circular coil 0.660 m in radius to create a 1.20-T field (typical of an MRI instrument) at its center with no iron present. The magnetic field of a proton is approximately like that of a circular current loop 0.650×10−15 m in radius carrying 1.05×104 A . What is the field at the center of such a loop?
Physics
1 answer:
gtnhenbr [62]3 years ago
7 0

Answer:

B = 4.059 x 10¹⁵ T

Explanation:

Given,

Number of loop, N = 400

radius of loop, r = 0.65 x 10⁻¹⁵ m

Current, I = 1.05 x 10⁴ A

Magnetic field at the center of the loop

B = \dfrac{\mu_0NI}{2R}

B = \dfrac{4\pi\times 10^{-7}\times 400 \times 1.05 \times 10^4}{2\times 0.65\times 10^{-15}}

B = 4.059 x 10¹⁵ T

You might be interested in
A stone is dropped from rest from the top of a cliff into a pond below. If its initial height is 10 m, what is its speed when it
Brut [27]

Answer:

14 m/s

Explanation:

The motion of the stone is a free fall motion, so an accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground. So, we can use the following SUVAT equation:

v^2 -u^2 = 2gh

where

v is the final speed of the stone as it reaches the water

u = 0 is the initial speed

g = 9.8 m/s^2 is the acceleration

h = 10 m is the distance covered by the stone

Solving for v, we find

v=\sqrt{u^2+2gh}=\sqrt{0+2(9.8 m/s^2)(10 m)}=14 m/s

8 0
3 years ago
What information do you need to describe an object's location
stira [4]
longitude and latitude<span />
4 0
3 years ago
A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
KatRina [158]

Answers:

a) 0.80 kg

b) 2.12 s

c) 1.093 m/s^{2}

Explanation:

We have the following data:

k=7 N/m is the spring constant

A=12.5 cm \frac{1 m}{100 cm}=0.125 m is the amplitude of oscillation

V=32 cm/s=0.32 m/s is the velocity of the block when x=\frac{A}{2}=0.0625 m

Now let's begin with the answers:

<h3>a) Mass of the block</h3>

We can solve this by the conservation of energy principle:

U_{o}+K_{o}=U_{f}+K_{f} (1)

Where:

U_{o}=k\frac{A^{2}}{2} is the initial potential energy

K_{o}=0  is the initial kinetic energy

U_{f}=k\frac{x^{2}}{2} is the final potential energy

K_{f}=\frac{1}{2} m V^{2} is the final kinetic energy

Then:

k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2} (2)

Isolating m:

m=\frac{k(A^{2}-x^{2})}{V^{2}} (3)

m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}} (4)

m=0.80 kg (5)

<h3>b) Period</h3>

The period T is given by:

T=2 \pi \sqrt{\frac{m}{k}} (6)

Substituting (5) in (6):

T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}} (7)

T=2.12 s (8)

<h3>c) Maximum acceleration</h3>

The maximum acceleration a_{max} is when the force is maximum F_{max}, as well :

F_{max}=m.a_{max}=k.x_{max} (9)

Being x_{max}=A

Hence:

m.a_{max}=kA (10)

Finding a_{max}:

a_{max}=\frac{kA}{m} (11)

a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg} (12)

Finally:

a_{max}=1.093 m/s^{2}

5 0
3 years ago
A dog exerts a force of 30N to move a wagon 2m in 5s. What is the power of the dog
Hunter-Best [27]

Explanation:

power=f×v. recall= distances/ time

= f× d/t

= 30 × 2/5

=12watt

6 0
3 years ago
In the standing waves experiment, the string has a mass of 31.2 g and a length of 0.7 m. The string is connected to a mechanical
mestny [16]

Answer:

linear density of the string = 4.46 × 10⁻⁴ kg/m

Explanation:

given,

mass of the string = 31.2 g

length of string = 0.7 m

linear density of the string = \dfrac{mass\ of\ string}{length}

linear density of the string = \dfrac{31.2\times 10^{-3}\ kg}{0.7\ m}

linear density of the string = 44.57 × 10⁻³ kg/m

linear density of the string = 4.46 × 10⁻⁴ kg/m

7 0
3 years ago
Other questions:
  • Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the press
    12·1 answer
  • A 32.5 g cube of aluminum initially at 45.8 °C is submerged into 105.3 g of water at 15.4 °C. What is the final temperature of b
    10·1 answer
  • Describe how mass affects the time required for an object to reach the ground from a given drop height.
    12·1 answer
  • Existe otra variable a tener en cuenta cuando de la aplicación de un trabajo se trata: el tiempo en que se aplica. Por ejemplo,
    14·1 answer
  • If your friend said that to that kinetic energy was changing to potential emergy at point c, how would you respond
    5·1 answer
  • If Angela ran to the bus and back to where she started what distance would she travel ?
    8·1 answer
  • An electron moves along the z-axis with vz=4.5×10^7m/s. As it passes the origin, what are the strength and direction of the magn
    12·1 answer
  • Which diseases are most likely to be treated with antibiotics?
    13·1 answer
  • Can someone help label these?
    14·1 answer
  • A ball is projected at an angle of 30° above the horizontal with a speed of 35 m/s. What will be its approximate horizontal rang
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!