We are given with a velocity-distance-time kinematic problem given the different times of two runners and is asked for the difference in distances the runner has ran in the track. we use the formula v= d/t where d is the distance of running, t is time and v is the velocity of the runner.
First runner,
v = d/t = 1000 m / (120+28.13s ) = 6.750826976 m/s
Second runner
Using the same velocity we determine d2.
v = d2/t2 = d2 / (120+28.48s) = 6.750826976 m/s ; d2 = 1002.362789
distance of running track is the difference of the two distance achieved by the runners, delta d= d2 - d = 2.362789 m
Answer:
minimum mass of the neutron star = 1.624 × 10^30 kg
Explanation:
For a material to remain on the surface of a rapidly rotating neuron star, the magnitude oĺf the gravitational acceleration on the material must be equal to the magnitude of the centripetal acceleration of the rotating neuron star.
This can be represented by the explanations in the attached document.
minimum mass of the neutron star = 1.624 × 10^30 kg
The distance should be 11 cm and the image will be inverted (and smaller)
I used the Lens Equation:

Where:
obj. is the distance of the object
im. is the distance of the image
f is the focal length
<span>Grasslands making up half of the African continent</span>
New moon, because the New Moon (A) because the sun and the moon work together most when it is there on the tides