It was a man named <span>Johannes Kepler. </span>
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


Answer:Newton's three laws of motion relate to each other in that they lay a foundation for the principles of things in motion, then build upon that foundation. For example, the first law of motion,...
Explanation: WEEEEEEEEEEEEEEEEEEEEWOOOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWWWWWWWOOOOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWWWWWWWWWWWWWO-EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Answer:
The boat will be 74 .17 meters downstream by the time it reaches the shore.
Explanation:
Consider the vector diagrams for velocity and distance shown below.
converting 72 miles per hour to km/hr
we have 72 miles per hour 72 × 1.60934 = 115.83 km/hr
The velocity vectors form a right angled triangle, and can be solved using simple trigonometric laws


This is the vector angle with which the ship drifts away with respect to its northward direction.
<em>From the sketch of the displacement vectors, we can use trigonometric ratios to determine the distance the boat moves downstream.</em>
Let x be the distance the boat moves downstream.d



∴The boat will be 74 .17 meters downstream by the time it reaches the shore.