Answer:
C) 1.0 m
Explanation:
The component of the velocity parallel to the sidewalk is:
vₓ = v cos θ
vₓ = 0.1 m/s cos 45°
vₓ = 0.0707 m/s
The distance traveled after 14 seconds is:
d = vₓ t
d = (0.0707 m/s) (14 s)
d = 0.99 m
Closest answer is C) 1.0 m.
If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.
Answer:
6 m/s
Explanation:
Given that :
mass of the block m = 200.0 g = 200 × 10⁻³ kg
the horizontal spring constant k = 4500.0 N/m
position of the block (distance x) = 4.00 cm = 0.04 m
To determine the speed the block will be traveling when it leaves the spring; we applying the work done on the spring as it is stretched (or compressed) with the kinetic energy.
i.e
v = 6 m/s
Hence,the speed the block will be traveling when it leaves the spring is 6 m/s
Explanation:
period of pendulum = time taken for 1 oscillation = time taken for 1 complete back and forth vibration
q1 ans is given in question its 1.5 sec
q2 ans is 1.5 sec longer than 1 sec period
Answer:
16.1 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, the spring is compressed by x = 35 cm = 0.35 m, and it stores an elastic potential energy given by
where k = 316 N/m is the spring constant. Once the block is released, the spring returns to its natural length and all its elastic potential energy is converted into kinetic energy of the block (which starts moving). This kinetic energy is equal to
where m = 0.15 kg is the mass of the block and v is its speed.
Since the energy must be conserved, we can equate the initial elastic energy of the spring to the final kinetic energy of the block, and from the equation we obtain we can find the speed of the block: