Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
Elastic
Explanation is that it is force which is snapping back
Answer:
v = 1 i ^ m / s, v = 1 m / s
Explanation:
In this problem we show the difference between vectors and scalars.
The average speed is
v = Δx / Δt
The bold are vectors
Δx = 20-10 = 10 i^ m
v = 10/10
v = 1 i ^ m / s
the unit vector indicates that the velocity is on the x-axis
The average speed is
v =Δx / Δt
v = 10/10
v = 1 m / s
in this case we have a scalar
Answer:
See below ~
Explanation:
The Mechanical Advantage (MA) is defined as the ratio between the force produced by the machine to the force applied to it.
=============================================================
So,
⇒ 
⇒ This means that the force produced is twice the applied force
Answer:
kE=0.0735 J
Explanation:
Given that
Radius ,R=10 cm = 0.1 m
Mass ,m= 3 kg
Angular speed ,ω = 3.5 rad/s
We know that moment of inertia for solid sphere given as

Kinetic energy

Now by putting the values


kE=0.0735 J
Therefore the kinetic energy will be 0.0735 J