Answer:
Explanation:
a )
initial velocity u = 45 m/s
acceleration a = - 5 m/s²
final velocity v = 0
v = u - at
0 = 45 - 5 t
t = 9 s
b )
s = ut - 1/2 at²
= 45 x 9 - .5 x5x 9²
405 - 202.5
202.5 m
2 )
a )
s = ut + 1/2 a t²
u = 0
s = 1/2 at²
= .5 x 9.54 x 6.5²
= 201.5 m
b )
v = u + at
= 0 + 9.54 x 6.5
= 62.01 m / s
3
a )
acceleration = (v - u) / t
= (34 - 42) / 2.4
= - 3.33 m /s²
b )
v² = u² - 2 a s
34² = 42² - 2 x 3.33² s
s = 27.41 m
c )
Average velocity
Total displacement / time
= 27.41 / 2.4
= 11.42 m /s
4 )
a )
v = u + at
v = 0 + 3 x 4
= 12 m /s
b )
s = ut + 1/2 a t²
= o + .5 x 3 x 4²
= 24 m
Answer:
7] Force = mass × acceleration
Force = 2 × 5
<u>Force = 10 N</u>
<u></u>
8] Velocity = acceleration due to gravity × time taken
Velocity = 9.8 × 12
<u>Velocity = 117.6 m/s</u>
I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
20 ohms in parallel with 16 ohm= 8.89
20x16/20+16. Product over sum
Pretty sure that it is 0.