Displacement is a vector quantity. So, you incorporate the vector calculations when you try to determine the resultant vector. This is the shortest path from the starting point to the endpoint. If they are moving on one axis only, you use sign conventions. For motions moving to the left, use the negative sign. If it's moving to the right, then use the positive sign. Now, it the object moves 2 km to the left, and 2 km also to the right, the displacement is zero.
Displacement = 2 km - 2km = 0
Generally, the equation is:
<span>Displacement = Distance of motion to the right - Distance of motion to the left</span>
Answer:
changing the magnetic field more rapidly
Explanation:
According to Faraday's law, whenever there is a change in the magnetic lines of force, it leads the production of induced emf. The magnitude of induced emf is proportional to to the rate of change of flux.
Hence if the magnetic field inside a loop of wire is changed rapidly, the magnitude of induced emf increases in accordance with Faraday's law of electromagnetic induction stated above when the magnetic field is changed more rapidly, hence the answer.
Answer:
Time will be 19 ms so option (a) is correct option
Explanation:
We have given that mass of wire m = 50 gram = 0.5 kg
Frequency f = 810 Hz
Wavelength = 0.4 m
Velocity is given by

Amplitude is given as d = 6 m
So time 
So option (a) is correct option
Answer:
35, I got you bro, i got you