Answer: 26.84 m/s
Explanation:
Given
Original frequency of the horn 
Apparent frequency 
Speed of sound is 
Doppler frequency is

Where,

Insert values
![\Rightarrow 246=228\left[\dfrac{340+v_o}{340-0}\right]\\\\\Rightarrow 366.84=340+v_o\\\Rightarrow v_o=26.8\ m/s](https://tex.z-dn.net/?f=%5CRightarrow%20246%3D228%5Cleft%5B%5Cdfrac%7B340%2Bv_o%7D%7B340-0%7D%5Cright%5D%5C%5C%5C%5C%5CRightarrow%20366.84%3D340%2Bv_o%5C%5C%5CRightarrow%20v_o%3D26.8%5C%20m%2Fs)
Thus, the speed of the car is 
The statement ‘An advantage of
electron microscopes compared to light microscopes is that electron microscopes
are inexpensive and commonly used in most biology laboratories allow you to view living cells, while light microscopes
do not have higher resolution that allows you to view smaller specimens allow
you to view the true colors of the specimens being viewed’ is true. In fact,
electron microscope is more efficient than a light microscope due to its
mechanism using only light without magnifying the specimen a thousand times.
<h2>
Kinetic energy of mass 4 kg ball is less than kinetic energy of mass 2 kg ball</h2>
Explanation:
Kinetic energy = 0.5 x Mass x Velocity²
For ball of mass 2 kg
Mass, m = 2 kg
Velocity, v = 4 m/s
Kinetic energy = 0.5 x 2 x 4² = 16 J
For ball of mass 4 kg
Mass, m = 4 kg
Velocity, v = 2 m/s
Kinetic energy = 0.5 x 4 x 2² = 8 J
Kinetic energy of mass 4 kg ball is less than kinetic energy of mass 2 kg ball
Answer:
ummm imma need the picture bud
Explanation:
Answer:
The speed of the stone when it is 4.66 m higher is 236.057 m/s.
Explanation:
Given the initial velocity and vertical distance, we can use the fourth kinematic equation (
) to find v final, or the v to the left of the equal sign. We know
(initial velocity) is 24.7 m/s, y (change in vertical distance) is 4.66 m, and a is another way to write g (acceleration due to gravity), or 9.8
.
From here you could plug in the values and solve for v final, but to make the solving process simpler, we can simplify the given equation, <em>then </em>plug in the known values.
To isolate v final, we can take the square root of
and do the same to the right side of the equation. Therefore, we can find v final with:
, where v initial is outside of the square root because it squared...
If we plug in the known values to the simplified equation, we get: 
The final answer is 236.057 m/s.