Answer:
I. a, c, f and h
II. e
III. b, d, g and i
IV. i
Explanation:
I. Chemical symbols are simple abbreviations used to represent various elements or compound. They consist entire of alphabet.
For the diagram given above, the labelled parts which represent chemical symbol are: a, c, f and h
II. Coefficients are numbers written before the chemical symbol of elements or compound.
For the diagram given above, the labelled part which represent Coefficient is: e
III. Number of atoms of element present in a compound is simply obtained by taking note of the numbers written as subscript in the chemical formula of the compound.
For the diagram given above, the labelled part which represent the number of atoms of the element are: b, d, g and i
IV. When no number is written as subscript in the formula of the element in the compound, it means the element has just 1 atom in the compound.
For the diagram given above, the labelled part which indicates that only 1 atom of the element is present is: i
Answer:
As the planets are very small and dark in comparison with stars, it makes them very hard to be found from earth.
Explanation:
Astronomy, of course, has a solution for this. As astronomers can't observe planets directly, they decided to observe the stars and search for the effects that planets have on them.
There are many ways of observing the exoplanets: Radial Velocity, Transit Photometry, Microlensing, Astrometry, Direct Imaging, etc.
Before all of this, scientist had to find ways to prove their theories. Most of their time they have spent in giving the creative answers.
Science and creativity are very much connected when we speak about the development of science. Rationality and creativity always go together.
In order to create an idea that other people will consider useful, it is important to use creativity. As no one has the exact answer when it comes to science, the adventure is to research the unknown.
Power is defined as
P = I*V
where I is the current and V is the voltage
Ohm's law gives us the relation betwen Voltage and current in a resistive component
V = I*R , Then
P = V² / R
We solve for R,
R = (110 V)²/ 75W = 161.33 ohms
Answer:
I would say that I agree with the one that said that each hill must be lower than the previous one and use the principle of conservation of energy to explain.
Explanation:
Roller coaster are usually designed such that its total energy remains conserved at any point on the track. Now, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. At certain height on the track, the total energy of the roller coaster is in form of potential energy, which gets converted to kinetic energy as soon as it starts sliding down the hill till get to the hill's endpoint where it has maximum kinetic energy. The cycle of sliding from a high point on the track to a low point on the track means there is potential energy is converted to kinetic energy and kinetic energy then converts back to potential energy and the cycle continues.
However, due to the effect of gravity and frictional force between the track and the coaster, the energy of the coaster is gradually reduces, so it becomes a bit difficult for the coaster to move to the next hill of the same height. It is for this reason that each hill must be lower than the previous one, so that the coaster can overcome the next hill's height with its reduced energy until it loses all its energy and comes to a stop.
Because even though the moon is smaller, therefore a weaker gravitational pull, the moon is much closer to the earth than the sun, thus having a greater gravitational pull