Answer:
The final pressure of the gas is:- 21.3 kPa
Explanation:
Using Boyle's law

Given ,
V₁ = 10.0 L
V₂ = 45.0 L
P₁ = 96.0 kPa
P₂ = ?
Using above equation as:




The final pressure of the gas is:- 21.3 kPa
Fe3N2, also known as Iron (II) nitride, is an ionic compound.
Ionic compounds are compounds that consists of metals and non-metals bonded with ionic bonds. The metal ion gives up electron(s) to the non-metals.
Since iron is a metal and nitrogen is an non-metal, the bond they would form would be an ionic bond. Iron gives up 2 electrons to form iron(II) ion, while nitrogen gains 3 electrons to form nitride ion. Since one iron cannot let a nitrogen gain 3 electrons, so in the compound, there would be 3 iron (ii) ions that has given up 6 electrons in total while 2 nitride ions have gained 6 electrons in total.
Answer:
a) 88.48%
b) 0.05625 mol
Explanation:
2CH₃CH₂OH(l) → CH₃CH₂OCH₂CH₃(l) + H₂O(g) Reaction 1
CH₃CH₂OH(l) → CH₂═CH₂(g) + H₂O(g) Reaction 2
a) CH₃CH₂OH = 46.0684 g/mol
CH₃CH₂OCH₂CH₃ = 74.12 g/mol
1 mol CH₃CH₂OH ______ 46.0684 g
x ______ 50.0 g
x = 1.085 mol CH₃CH₂OH
1 mol CH₃CH₂OCH₂CH₃ ______ 74.12 g g
y ______ 35.9 g
y = 0.48 mol CH₃CH₂OCH₂CH₃
100% yield _____ 0.5425 mol CH₃CH₂OCH₂CH₃
w _____ 0.48 mol CH₃CH₂OCH₂CH₃
w = 88.48%
b) Only 0.96 mol of ethanol reacted to form diethyl ether. This means that 0.125 mol of ethanol did not react. 45% of 0.125 mol reacted to form ethylene. Therefore, 0.05625 mol of ethanol reacted by the side reaction (reaction 2). Since 1 mol of ethanol leads to 1 mol of ethylene, 0.05625 mol of ethanol produces 0.05625 mol of ethylene.
Question:
<em>What effects does the concentration of reactants have on the rate of a reaction?</em>
Answer:
<em>Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.</em>
<em>Increasing the concentration of reactants generally increases the rate of reaction because more of the reacting molecules or ions are present to form the reaction products. ... When concentrations are already high, a limit is often reached where increasing the concentration has little effect on the rate of reaction.</em>
Hope this helps, have a good day. c;