1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
3 years ago
12

Which parameter best defines the primary difference between weather and climate?

Physics
1 answer:
LenKa [72]3 years ago
3 0

Answer:

time

Explanation:

weather is the atmospheric condition of a place over a short period of time, while climate is the weather condition prevailing in an area over a long period of time. From the two definitions above we can see that weather is the condition over a short period of time while climate is over longer periods, therefore the primary difference between them is time.      

You might be interested in
which object has the most gravitational potential energy? A. an 8 kg book at a height of 3m B. an 5 kg book at a height of 3 m C
astra-53 [7]
I think A is the correct answer because its high is more higher compared to the others, and the mass really does not matter, to know the gravitational potential energy, we need to know how high the object is located because gravity does not show any favor to an object that has more mass or an object that doesnt
6 0
3 years ago
Read 2 more answers
What is gibbs paradox?
mr_godi [17]
This leads to a paradox known as the Gibbs paradox, after Josiah Willard Gibbs. The paradox allows for the entropy of closed systems to decrease, violating the second law of thermodynamics. A related paradox is the "mixing paradox".
7 0
3 years ago
I got part c right but idk why the other parts are wrong HELP!
dedylja [7]

a) The impulse is 76.5 Ns

b) The average force is 546.4 N

c) The final speed is 31.5 m/s

Explanation:

a)

The impulse exerted on an object is defined as

J=\int F\Delta t

where

F is the magnitude of the force exerted on the object

\Delta t is the time interval during which the force is applied

If we consider a graph of the force applied vs time, it follows that the impulse exerted is equal to the area under the graph.

Therefore, in this problem, we can calculate the impulse by computing the area under the graph. We have a trapezium, whose bases are

B=0.14-0 = 0.14s\\b=8-5=3s

and whose height is

h=900 N

Therefore, the area (and the impulse) is

J=\frac{(B+b)h}{2}=\frac{(0.14+0.03)(900)}{2}=76.5 Ns

b)

In this problem, the force applied is not constant. However, we can rewrite the impulse also as

J=F_{avg} \Delta t

where

F_{avg} is the average force exerted during the whole time \Delta t

In this problem we have

J = 76.5 Ns is the impulse (calculated in part a)

\Delta t = 0.14 s is the time interval

Solving for the average force, we find

\Delta t = \frac{J}{F_{avg}}=\frac{76.5}{0.14}=546.4 N

c)

According to the impulse theorem, the impulse exerted on an object is equal to the change in momentum of the object:

J=\Delta p = m(v-u)

where

m is the mass of the object

v is the final velocity

u is the initial velocity

In this problem, we have

J = 76.5 Ns

m = 3.0 kg is the mass

u = 6.0 m/s is the initial velocity

Solving for v, we find the final velocity (and speed):

v=u+\frac{J}{m}=6.0+\frac{76.5}{3}=31.5 m/s

Learn more about impulse and momentum:

brainly.com/question/9484203

#LearnwithBrainly

6 0
3 years ago
What is the weight of a 225kg space probe on the moon and the acceleration of gravity on the moon is 1.62
olga nikolaevna [1]
<span>364N should be your answer.. hope this helps

</span>
7 0
3 years ago
Read 2 more answers
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass and spring are swung in a horizontal circle, w
Annette [7]

Answer:

66 rpm

Explanation:

The period of oscillation is given by

T=2\pi \sqrt{\frac {m}{k}}

\frac {k}{m}=\frac {4\pi^{2}}{T^{2}} where  T is time period of oscillation which is given as 0.35 s, k s spring constant and m is the mass of the object attached to the spring.

Also, net force is given by

Net force=m\omega^{2} L

\omega=\sqrt{\frac {k\triangle L}{mL}} where \triangle L is the elongation, L is original length, \omega is the angular velocity

Substituting the equation of \frac {k}{m} into the above we obtain

\omega=\sqrt {\frac {4\pi^{2}\triangle L}{T^{2} L}}

\omega=\sqrt {4\pi^{2}\times 0.15L}{0.35^{2}\times L}}=6.952763\approx 6.95 rad/s

6.95\times\frac {60 s}{2\pi rad}\approx 66 rpm

6 0
4 years ago
Other questions:
  • A cylinder with moment of inertia I about its center of mass, mass m, and radius r has a string wrapped around it which is tied
    5·1 answer
  • Children and adolescents should do ____ hour or more of physical activity every day.
    6·2 answers
  • A battery with e.m.f 12v and the internal resistance 0.5ohms is connected to an electric bulb of resistance 2 ohms. Calculate th
    5·1 answer
  • To understand the standard formula for a sinusoidal traveling wave. One formula for a wave with a y displacement (e.g., of a str
    5·1 answer
  • What does the delta symbol represent in the equation?
    5·2 answers
  • When two or more waves are at the same place at the same time, which phenomena occurs
    15·2 answers
  • Consider a bus traveling to the west (negative x direction) that begins to slow down as it approaches a traffic light. Which sta
    8·1 answer
  • Swim 2km at 3km/h. Run at 12km/h for 1 ½ hours. Cycling 55km at 30 km/h. What is the mean overall speed.
    6·1 answer
  • Describe how work done is related to a change in volume of a fluid. 100 points
    14·2 answers
  • Part H)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!