Answer:
![X+Y \sim N(\mu_X +\mu_Y , \sqrt{\sigma^2_X +\sigma^2_Y})](https://tex.z-dn.net/?f=%20X%2BY%20%5Csim%20N%28%5Cmu_X%20%2B%5Cmu_Y%20%2C%20%5Csqrt%7B%5Csigma%5E2_X%20%2B%5Csigma%5E2_Y%7D%29)
The mean is given by:
![\mu = 3.8+2.9= 6.7](https://tex.z-dn.net/?f=%20%5Cmu%20%3D%203.8%2B2.9%3D%206.7)
And the standard deviation would be:
![\sigma =\sqrt{1.2^2 + 1.7^2} = 2.08](https://tex.z-dn.net/?f=%20%5Csigma%20%3D%5Csqrt%7B1.2%5E2%20%2B%201.7%5E2%7D%20%3D%202.08)
And the distribution for X+Y would be:
![X+Y \sim N(6.7 , 2.08)](https://tex.z-dn.net/?f=%20X%2BY%20%5Csim%20N%286.7%20%2C%202.08%29%20)
And the best answer would be:
D.) Mean, 6.7; standard deviation, 2.08
Step-by-step explanation:
Let X the random variable who represent the AP Art History exam we know that the distribution for X is given by:
![X \sim N(3.8, 1.2)](https://tex.z-dn.net/?f=%20X%20%5Csim%20N%283.8%2C%201.2%29)
Let Y the random variable who represent the AP English exam we know that the distribution for X is given by:
![X \sim N(2.9, 1.7)](https://tex.z-dn.net/?f=%20X%20%5Csim%20N%282.9%2C%201.7%29)
We want to find the distribution for X+Y. Assuming independence between the two distributions we have:
![X+Y \sim N(\mu_X +\mu_Y , \sqrt{\sigma^2_X +\sigma^2_Y})](https://tex.z-dn.net/?f=%20X%2BY%20%5Csim%20N%28%5Cmu_X%20%2B%5Cmu_Y%20%2C%20%5Csqrt%7B%5Csigma%5E2_X%20%2B%5Csigma%5E2_Y%7D%29)
The mean is given by:
![\mu = 3.8+2.9= 6.7](https://tex.z-dn.net/?f=%20%5Cmu%20%3D%203.8%2B2.9%3D%206.7)
And the standard deviation would be:
![\sigma =\sqrt{1.2^2 + 1.7^2} = 2.08](https://tex.z-dn.net/?f=%20%5Csigma%20%3D%5Csqrt%7B1.2%5E2%20%2B%201.7%5E2%7D%20%3D%202.08)
And the distribution for X+Y would be:
![X+Y \sim N(6.7 , 2.08)](https://tex.z-dn.net/?f=%20X%2BY%20%5Csim%20N%286.7%20%2C%202.08%29%20)
And the best answer would be:
D.) Mean, 6.7; standard deviation, 2.08