Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
Answer: option C. HF
Explanation: A polar bond is a covalent bond between two atoms where the electrons forming the bond are unequally distributed. Fluorine is more electronegative than hydrogen so the electrons in the bond are more closely associated with the fluorine atom than with the hydrogen atom.
A chemist is using a solution of HNO₃ that has a pH of 3.75. what is [H⁺] for the solution is 1.7 × 10⁻⁴M.
<h3>How do we calculate the [
H⁺]?</h3>
Concentration of H⁺ ion will be calculated by using the below equation of pH as:
pH = -log[H⁺]
or [H⁺] = 
Given that, pH = 3.75
So concentration of H⁺ ion will be calculated as:
[H⁺] = 
[H⁺] = 1.7 × 10⁻⁴M
Hence concentration of H⁺ ion is 1.7 × 10⁻⁴M.
To know more about pH & [H⁺], visit the below link:
brainly.com/question/8758541
Answer:
75 kJ/mol
Explanation:
The reactions occur at a rate, which means that the concentration of the reagents decays at a time. The rate law is a function of the concentrations and of the rate constant (k) which depends on the temperature of the reaction.
The activation energy (Ea) is the minimum energy that the reagents must have so the reaction will happen. The rate constant is related to the activation energy by the Arrhenius equation:
ln(k) = ln(A) -Ea/RT
Where A is a constant of the reaction, which doesn't depend on the temperature, R is the gas constant (8.314 J/mol.K), and T is the temperature. So, for two different temperatures, if we make the difference between the two equations:
ln(k1) - ln(k2) = ln(A) - Ea/RT1 - ln(A) + Ea/RT2
ln (k1/k2) = (Ea/R)*(1/T2 - 1/T1)
k1 = 8.3x10⁸, T1 = 142.0°C = 415 K
k2 = 6.9x10⁶, T2 = 67.0°C = 340 K
ln(8.3x10⁸/6.9x10⁶) = (Ea/8.314)*(1/340 - 1/415)
4.8 = 6.39x10⁻⁵Ea
Ea = 75078 J/mol
Ea = 75 kJ/mol
It’s because two is four and it was really kind of you and it’s c