The balanced equation for the reaction between KOH and HBr is as follows;
KOH + HBr --> KBr + H₂O
stoichiometry of KOH to HBr is 1:1
number of KOH moles reacted - 0.25 mol/L x 0.015 L = 0.00375 mol
according to molar ration
number of KOH moles reacted = number of HBr moles reacted
number of HBr moles reacted - 0.00375 mol
if 12 mL of HBr contains - 0.00375 mol
then 1000 mL of HBr contains - 0.00375 mol / 12 mL x 1000 mL = 0.313 mol
therefore molarity of HBr is 0.313 M
Answer: d. the distance between two rarefactions,
Explanation:
Wavelength is the distance between two identical adjacent points in a wave. This means that it is the distance between two adjacent compressions or two adjacent rarefactions.
Wavelengths are inversely related to frequency because the longer the wavelength, the less the number of wave cycles per second.
Answer:
1gram of water
Explanation:
First balance the equation
Ch4+2O2>CO2+2H2O
Ratio is 1:2
500×10-3what about 2?
500×10-3×2=1g
1g of water
Answer:
I play none but If I did I would choose Xbox
btw, thank you
Answer:
There are 0.93 g of glucose in 100 mL of the final solution
Explanation:
In the first solution, the concentration of glucose (in g/L) is:
15.5 g / 0.100 L = 155 g/L
Then a 30.0 mL sample of this solution was taken and diluted to 0.500 L.
- 30.0 mL equals 0.030 L (Because 30.0 mL ÷ 1000 = 0.030 L)
The concentration of the second solution is:

So in 1 L of the second solution there are 9.3 g of glucose, in 100 mL (or 0.1 L) there would be:
1 L --------- 9.3 g
0.1 L--------- Xg
Xg = 9.3 g * 0.1 L / 1 L = 0.93 g