25km/h = 6.94 m/s
suvat
s=16
u=6.94
v=0
a=a
v^2=u^2+2as
(v^2-u^2)/2s = a =1.5ms^-2
The answer is parallel
If the <span>circuits in a car</span> were series, they would go out at the same time.
I hope this helps! :3
The complete question is;
A circular coil consists of N = 410 closely winded turns of wire and has a radius R = 0.75 m. A counterclockwise current I = 2.4 A is in the coil. The coil is set in a magnetic field of magnitude B = 1.1 T.
a. Express the magnetic dipole moment μ in terms of the number of the turns N, the current I, and radius
R.
b. Which direction does μ go?
Answer:
A) μ = 1738.87 A.m²
B) The direction of the magnetic moment will be in upward direction.
Explanation:
We are given;
The number of circular coils;
N = 410
The radius of the coil;R = 0.75m
The current in the coils; I = 2.4 A
The strength of magnetic field;
B =1.1T
The formula for magnetic dipole moment is given as;
μ = NIA
Where;
N is number of turns
I is current
A is area
Now, area; A = πr²
So, A = π(0.75)²
Thus,plugging in relevant values, the magnetic dipole moment is;
μ = 410 * 2.4 * π(0.75)²
μ = 1738.87 A.m²
B) According to Fleming's right hand rule, the direction of the magnetic moment comes out to be in upward direction.
Answer: first blank: kinetic
Second blank: potential
Explanation:
Hope this helps and please consider choosing me for Brainiest!
According to the research, the correct option the eardrum. Sound waves that enter the ear canal are directed to the <u>eardrum</u>, causing it to vibrate.
<h3>What is the
eardrum?</h3>
It is the membrane found in the middle ear of vertebrate animals, separating this sector from the external auditory canal.
When sound waves enter through the external auditory canal, the eardrum vibrates, transmitting its movement to the middle ear through a series of bones and in this way, the pressure change is transformed into a mechanical movement.
Therefore, we can conclude that according to the research, the correct option is the eardrum. Sound waves that enter the ear canal are directed to the <u>eardrum</u>, causing it to vibrate.
Learn more about the eardrum here: brainly.com/question/12770491
#SPJ1