Answer:
A. Zero
Explanation:
Given data,
The charge of the test charge, q = 1 C
The distance the charge moved against the filed of intensity, x = 30 cm
= 0.3 m
The electric field intensity, E = 50 N/C
The energy stored in the charge at 0.3 m is given by the formula,
V = k q/r
Where,
= 9 x 10⁹ Nm²C⁻²
The charge is moved from the potential V₁ to V₂ at 30 cm
Substituting the given values in the above equation
V₁ = 9 x 10⁹ x 30 / 0.3
= 1.5 x 10¹² J
And,
V₂ = 1.5 x 10¹² J
The energy stored in it is,
W = V₂ - V₁
= 0
Hence, the energy stored in the charge is, W = 0
<span>When two objects collide their momentum after the collision is explained by</span> the conservation of momentum
A solid, liquid, or gas or plasma. Which I think it is. Check though.
To determine the force of the system, we use Newton's Second Law of motion which relates force and mass where they are directly proportional and the constant of proportionality is the acceleration. We calculate as follows:
F = ma
F = 10.41 kg ( 6.5 m/s^2 )
F = 67.67 kg m / s^2 or N
Answer:
Location 2
Explanation:
This shows fall because the Earth is a little tilted not giving as much light