we are given the the two reactants: AgNO3 and Na2CO3 and is asked to write a balanced equation and a net ionic equation for the reaction of the two. This is a double-replacement reaction:
2AgNO3 (aq)+ Na2CO3 (aq)= Ag2CO3 + 2NaNo3 (aq)
2 Ag + + 2 N03- + 2Na+ + CO32- = Ag2CO3 + 2 Na+ 2NO3-
cancelling the spectator ions, 2Ag + + CO32- = Ag2CO3
The correct answer is option B. Dirty water is a mixture of solid particles and liquid. It is both a mixture and pure substance.
The dirty water sample has both gravel and liquid water in it. After filtration the gravel is removed so the water sample looks clearer than before filtration. Liquid water is a pure substance because it is a compound that is made up of elements hydrogen and oxygen. Now the gravel is only physically combined with the liquid water, thus giving the water sample properties of a mixture. And like any mixture, gravel is physically separated through filtration from the liquid water.
Thus the water sample of the chemists is both a mixture and pure substance.
Answer:
When the drill hits oil, some of the oil rises from the ground high into the air. This immediate release of oil is known as a "gusher." Once a reservoir has been located, pumps are used to extract the oil.
The answer is (C) as the definitions states that atomic mass is the number of protons and neutrons.
Hope this helps :).
Explanation:
To delineate the the nature of the bonds that would be formed between the two elements, let us first write the electronic configuration of the two species;
Be = 2, 2
F = 2, 7
Beryllium is a metal with two valence electrons whereas fluorine is a halogen with seven valence electrons.
When Be loses two electrons it becomes isoelectronic with He;
Be → Be²⁺ + 2e⁻
Also, when fluorine gains an electron, it becomes isoelectronic with Ne;
F + e⁻ → F⁻
This loss and gain of electrons between the two elements creates an electrostatic attraction them and they enter into an electrovalent bond.
Hence;
Be²⁺ + 2F⁻ → BeF₂