Answer: Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
on one side of the equation and solve by plugging your values
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
Explanation:
<u>Answer:</u> The above reaction is non-spontaneous.
<u>Explanation:</u>
For the given chemical reaction:

Here, nickel is getting reduced because it is gaining electrons and iron is getting oxidized because it is loosing electrons.
We know that:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
To calculate the
of the reaction, we use the equation:


Relationship between standard Gibbs free energy and standard electrode potential follows:

As, the standard electrode potential of the cell is coming out to be negative for the above cell. Thus, the standard Gibbs free energy change of the reaction will become positive making the reaction non-spontaneous.
Hence, the above reaction is non-spontaneous.
Answer:
Here, acceleration due to gravity(a) is assumed as 10m/s².We can also take it as 9.8m/s²
Explanation:
When ice melts, the physicals state changes from solid to liquid. The energy or the heat required (q) required to change a unit mass (m) of a substance from solid to liquid is known as the enthalpy or heat of fusion (ΔHf). The variables; q, m and ΔHf are related as:
q = m * ΔHf
the mass of ice m = 65 g
the heat of fusion of water at 0C = ΔHf = 334 J/g
Therefore: q = 65 g * 334 J/g = 21710 J
Now:
4.184 J = 1 cal
which implies that: 21710 J = 1 cal * 21710 J/4.184 J = 5188.8 cal
Hence the heat required is 5188.8 cal or 5.2 Kcal (approx)
dim? im not so fluent in this but i did research yesterday