Answer:
(a) 1s² 2s² 2p⁶ 3s² 3p⁴
(b) 1s² 2s² 2p⁶ 3s² 3p⁵
(c) sp³
(d) No valence orbital remains unhybridized.
Explanation:
<em>Consider the SCl₂ molecule. </em>
<em>(a) What is the electron configuration of an isolated S atom? </em>
S has 16 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁴.
<em>(b) What is the electron configuration of an isolated Cl atom? </em>
Cl has 17 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁵.
<em>(c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl₂? </em>
SCl₂ has a tetrahedral electronic geometry. Therefore, the orbital 3s hybridizes with the 3 orbitals 3 p to form 4 hybrid orbital sp³.
<em>(d) What valence orbitals, if any, remain unhybridized on the S atom in SCl₂?</em>
No valence orbital remains unhybridized.
Answer:
Lithium
Explanation:
Alkali metals are group of metals which are present in first group of periodic table. As we know atomic number is equal to number of protons contained by a particular element. Therefore, the alkali metals along with there number of protons are listed below;
Alkali Metal Number of Protons
Lithium 3
Sodium 11
Potassium 19
Rubidium 37
Cesium 55
Francium 87
Hence, it is cleared from above table that Lithium is having fewer protons than 10.
I believe that it is petroleum ether.
It is a physical change because you can not put it back like it was