Answer:
Mass of KNO3= 10g
Molar mass of KNO3 = 101.1032g/mol
Volume = 250ml = 0.25L
No of mole on of KNO3 = mass of KNO3/Molar mass of KNO3
no of mole of KNO3 = 10/101.1032
No of mole of KNO3 = 0.09891
molarity of KNO3 = no of mole of KNO3/Vol (L)
Molarity = 0.09891/0.25 = 0.3956M
Molarity of KNO3 = 0.3956M
Given:
Stock dose/concentration of 20% Acetylcysteine (200 mg/mL)
150 mg/kg dose of Acetylcysteine
Weight of the dog is 13.2 lb
First we must convert 13.2 lb to kg:
13.2 lb/(2.2kg/lb) = 6 kg
Then we must calculate the dose:
(150 mg/kg)(6kg) = 900 mg
Lastly, we must calculate the dose in liquid form to be administered:
(900 mg)/(200 mg/mL) = 4.5 mL
Therefore, 4.5 mL of 20% Acetylcysteine should be given.
Pentaarsenic decafluoride
Penta=5
Arsenic=As
Deca=10
Fluoride=F
Drop the -ine and add -ide
Answer:
The First choice is correct
Explanation:
That is the closest example of what is shown
The molarity of KOH is 0.1055 M
<u><em> calculation</em></u>
Step 1: write the equation for reaction between H₂C₂O₄.2H₂O and KOH
H₂C₂O₄.2H₂O + 2 KOH → K₂C₂O₄ +4 H₂O
step 2: find the moles of H₂C₂O₄.2H₂O
moles = mass÷ molar mass
from periodic table the molar mass H₂C₂O₄.2H₂O= (1 x2) +(12 x2) +(16 x4) + 2(18)=126 g/mol
= 0.2000 g ÷ 126 g/mol =0.00159 moles
step 3: use the mole ratio to calculate the moles of KOH
H₂C₂O₄.2H₂O : KOH is 1:2
therefore the moles of KOH =0.00159 x 2 = 0.00318 moles
step 4: find molarity of KOH
molarity = moles/volume in liters
volume in liters = 30.12/1000=0.03012 L
molarity is therefore = 0.00318/0.03012 =0.1055 M