Answer:
k ≈ 9,56x10³ s⁻¹
Explanation:
It is possible to solve this question using Arrhenius formula:

Where:
k1: 1,35x10² s⁻¹
T1: 25,0°C + 273,15 = 298,15K
Ea = 55,5 kJ/mol
R = 8,314472x10⁻³ kJ/molK
k2 : ???
T2: 95,0°C+ 273,15K = 368,15K
Solving:



<em>k ≈ 9,56x10³ s⁻¹</em>
I hope it helps!
Just remember how many electrons can each sublevel hold.
S=2
P=6
D=10
Since we have 10 for atomic number, we can assume we have 10 electrons
1S2
2S2
2P6
The rest have zero because we already have 10 (2+2+6=10)
The net ionic equation formed is
Ag^+(aq)+Cl^−(aq)→AgCl(s)
Chromium(III) nitrate and silver(I) chloride are the products of the balanced molecular equation for the reaction between chromium(III) chloride and silver(I) nitrate. An (s) next to the chemical formula for silver(I) chloride designates it as an insoluble salt.
CrCl3(aq)+3AgNO3(aq)→Cr(NO3)3(aq)+3AgCl(s)
Silver and the chloride ions are the two ions that must interact to create silver(I) chloride. By designating ions as the reactants and silver(I) chloride as the product, the net ionic equation is formed.
Ag^+(aq)+Cl^−(aq)→AgCl(s)
Ionic Equation:
In general, anions and cations react to generate a compound in a dissolved media, which is known as an ionic reaction. Water-insoluble salts are created when the ions of water-soluble salts interact with one another in an aqueous media.
To learn more about Ionic equaion click the given link
brainly.com/question/19705645
#SPJ4
Answer:
60 g/100 g water
Explanation:
Find 5 °C on the horizontal axis.
Draw a line vertically from that point until you reach the solubility curve for CaCl₂.
Then draw a horizontal line from there to the vertical axis.
The solubility of CaCl₂ is 60 g/100 g water.
Answer:
See Explanation
Explanation:
What Adi failed to realize is that the oily substance that was obtained from lavender consists of a mixture of substances. It is not only the required fragrance that is present in the extract.
This experiment will not work because those other components in the mixture may be erroneously identified when they show up in the mass spectrum of the extract and may be mistaken for the fragrance in question.
Hence the experiment will not work because; if some kind of separation method is not used to identify other impurities in the oil, many other substances may be mistaken for the actual fragrance.