Answer:
The force required to push to stop the car is 288.67 N
Explanation:
Given that
Mass of the car, m = 1000 kg
Initial speed of the car, u = 1 m/s
The car and push on the hood at an angle of 30° below horizontal, 
Distance, d = 2 m
Let F is the force must you push to stop the car.
According work energy theorem theorem, the work done is equal to the change in kinetic energy as :



The force required to push to stop the car is 288.67 N
Answer:
simple machines such as ramps lessen the moment required to do work. if a triangle has a base of 5 and the height is 7, a ramp would make the hypotenuse of this triangle lessoning the total distance. using a²+b²=c² 25+49=c² 74≈8.6 and it is obvious that 8.6 is less than 12 in every unit. other simple machines such as pulleys make it lighter making it simply easier for an object to be lifted.
Explanation:
The broom handle that she have to balance if she hung a 400g mass from the end of the broom handle is 5.24m
This problem is centered on moment. Moment is the turning effect of a force about a point. It is expressed as:
Moment = Force× Distance
According to principle of moment, the sum of clockwise moment is equal to sum of anticlockwise moment at shown
M1d1 = M2d2
Given the following
M1 = 1.5kg
d1 = 1.4m
M2 = 400g = 0.4kg
d2 is required
Substitute
1.5(1.4) = 0.4d2
2.1 = 0.4d2
d2 = 2.1/0.4
d2 = 5.24m
Hence the broom handle that she have to if she hung a 400g mass from the end of the broom handle is 5.24m
Learn more here: brainly.com/question/21945515
The correct answer is Option (C) distance and time
Explanation:
Average speed of any object is defined as the total distance that object travels over the time it takes to travel that distance. In other words, average speed is the total distance divided by the elapsed time.

Therefore, as you can see in the above equation, the two measurements that are essential for the calculation of the average speed are the (total) distance and the (elapsed) time.
Hence, the correct option is C.
Answer:
None, both objects will hit ground at the same time.
Explanation:
- Assuming no air resistance present, and that both objects start from rest, we can apply the following kinematic equation for the vertical displacement:

- As the left side in (1) is the same for both objects, the right side will be the same also.
- Since g is constant close to the surface of the Earth, it's also the same for both objects.
- So, the time t must be the same for both objects also.