the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid.
Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:
Explanation:
The trick is in finding the volume.
Final Volume = 26.64
Initial Volume=<u>20.92</u> Subtract
Metal Volume 5.72 cm^3
Density = mass / volume
Density = 72.17 / 5.72
Density = 12.617
The time described above is known as the waves Period.
The time which it takes for a particle to complete one full cycle is known as the period. Period is normally measured in seconds. Frequency on the other hand is the number of cycles which are completed in a given period of time e.g a second. periodic time T is given by reciprocal of frequency (1/f).
Answer:

Explanation:
When a standing wave is formed with six loops means the normal mode of the wave is n=6, the frequency of the normal mode is given by the expression:

Where
is the length of the string and
the velocity of propagation. Use this expression to find the value of
.

The velocity of propagation is given by the expression:

Where
is the desirable variable of the problem, the linear mass density, and
is the tension of the cord. The tension is equal to the weight of the mass hanging from the cord:

With the value of the tension and the velocity you can find the mass density:

