Answer:
A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.
Explanation:
Tensile stress is referred as a deforming force, in which force acts perpendicular to the surface and pull an object apart, attempting to elongate it.
The tensile stress is a type of normal stress, in which a perpendicular force creates the stress to an object’s surface.
Hence, the correct option is "A."
Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:

ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂

θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂

=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain

=3.335 *10^-4

ε(avg) =150 *10^-6
orientation of γmax

θ = 31.71 or -58.29
To determine the direction of γmax

= 1.67 *10^-4
Answer: *changed*
Explanation: Because you peed
Below is the program to separate odd and even numbers
<u>Explanation</u>:
<u>L1:</u>
mov ah,00
mov al,[BX]
mov dl,al
div dh
cmp ah,00
je EVEN1
mov [DI],dl
add OddAdd,dl
INC DI
INC BX
Loop L1
jmp CAL
<u>EVEN1:</u>
mov [SI],dl
add Even Add,dl
INC SI
INC BX
Loop L1
<u>CAL: </u>
mov ax,0000
mov bx,0000
mov al,OddAdd
mov bl,EvenAdd
MOV ax,4C00h
int 21h
end
The above program separates odd and even numbers from the array using 8086 microprocessor. It has odd numbers in 2000h and even numbers in 3000h.
The current will lag the voltage in AC circuit that contains both resistance and inductance.
Answer: C
Explanation
There is no inductance only circuits in reality.
The circuits containing inductance has also a lower amount of resistance.
The current flows in both resistance and inductance.
There is a drop in the total voltage in resistance and inductance giving rise to the voltage applied in the coil when connected in a series.
An example being inductance coil an AC circuit connected to both resistance and inductance in series.
From the vector diagram, this conclusion can be drawn.