Answer:
c) the overall reaction order is 1.
Explanation:
The order of reaction is defined as the order in which the particles of the different reagents commission to produce a product. Additionally, the total order of reaction is the sum of the exponents of the concentrations in the law of the reaction rate, since the order depends on the reagent that is analyzed. The order of the reactions is determined experimentally.
The answer is b. Mass of the atoms
This is because of the law of conservation of mass. This means the mass in a system (in this case the reaction) can't change, so the quantity can't be added or removed
Answer:
1.9 × 10² g NaN₃
1.5 g/L
Explanation:
Step 1: Write the balanced decomposition equation
2 NaN₃(s) ⇒ 2 Na(s) + 3 N₂(g)
Step 2: Calculate the moles of N₂ formed
N₂ occupies a 80.0 L bag at 1.3 atm and 27 °C (300 K). We will calculate the moles of N₂ using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.3 atm × 80.0 L / (0.0821 atm.L/mol.K) × 300 K = 4.2 mol
We can also calculate the mass of nitrogen using the molar mass (M) 28.01 g/mol.
4.2 mol × 28.01 g/mol = 1.2 × 10² g
Step 3: Calculate the mass of NaN₃ needed to form 1.2 × 10² g of N₂
The mass ratio of NaN₃ to N₂ is 130.02:84.03.
1.2 × 10² g N₂ × 130.02 g NaN₃/84.03 g N₂ = 1.9 × 10² g NaN₃
Step 4: Calculate the density of N₂
We will use the following expression.
ρ = P × M / R × T
ρ = 1.3 atm × 28.01 g/mol / (0.0821 atm.L/mol.K) × 300 K = 1.5 g/L
The gastric chief cells of the stomach secrete enzymes for protein breakdown (inactive pepsinogen, and in infancy rennin). Hydrochloric acid activates pepsinogen into the enzyme pepsin, which then helps digestion by breaking the bonds linking amino acids, a process known as proteolysis.