The difference in air pressure which is created by the molecules in air help to move kite up into the air.
<u>Explanation:</u>
When air moves faster, pressure of air becomes less. Air moves at a faster speed above the kite than below it and so its pressure is less on top of kite. The air pressure below kite is less. This difference in pressure results in uplifting of kite. Molecules of air with high pressure exerts more force on kite from bottom and thus pushing it up in air.
The greater is the difference between air pressure above kite and air pressure below kite, greater is the amount of force exerted on kite and hence, it reaches a greater height.
There are four phases to the cell cycle: G1, where the cell grows; S phase, where DNA is duplicated; G2, where the cell makes final preparations for cell division; and M phase, where the cell enters mitosis. Mitosis, or cell division, is only a small part of the cell cycle
You didnt even gave a question.Sorry but i cant answer.
Answer:
Deterministic super-resolution: The most commonly used emitters in biological microscopy, fluorophores, show a nonlinear response to excitation, and this nonlinear response can be exploited to enhance resolution, such as STED, GSD, RESOLFT and SSIM.
Stochastic super-resolution: The chemical complexity of many molecular light sources gives them a complex temporal behavior, which can be used to make several close-by fluorophores emit light at separate times and thereby become resolvable in time, such as Super-resolution optical fluctuation imaging (SOFI) and all single-molecule localization methods (SMLM) such as SPDM, SPDMphymod, PALM, FPALM, STORM and dSTORM.
Explanation:
https://www.creative-biostructure.com/Super-resolution-Microscopy-Service-590.htm