With the addition of vectors we can find that the correct answer is:
C) Q> P > R = S > T
The addition of vectors must be done taking into account that they have modulus and direction. The analytical method is one of the easiest methods, the method to do it is:
- Set a Cartesian coordinate system
- Decompose vectors into their components in a Cartesian system
- Perform the algebraic sums on each axis
- Find the resultant vector using the Pythagoras' Theorem to find the modulus and trigonometry to find the direction.
In this exercise indicate that the modulus of all vectors is the same, suppose that the value of the modulus is A.
We fix a Cartesian coordinate system with the horizontal x axis and the vertical y axis, we can see that we do not need to perform any decomposition, so we perform the algebraic sums
Diagram P
x-axis
x = 2A
y-axis
y = 2A
The modulus of the resulting vector can be found with the Pythagorean Theorem
P =
P =
P = 2 √2 A
Diagram Q
x-axis
x = 3A
y-axis
y = A
Resulting
Q =
Q =
Q = 
Diagram R
x- axis
x = 0
y-axis
y = 2 A
Resulting
R =
R =
Diagram S
x-axis
x = 2 A
y-axis
y = 0
Resulting
S = 2A
Diagram T
x- axis
x = 0
y-axis
y = 0
Resultant T = 0
We order the diagram from highest to lowest
Q> P> R = S> T
When reviewing the different answers, the correct one is:
C. Q> P> R = S> T
Learn more about adding vectors here:
brainly.com/question/14748235
<span>The magnitude of the rock is equal to g. After the rock is released, there are no more forces acting on it, yet gravity remains. The initial inputs, on a bridge, at an angle of 30 deg below horizontal do not matter after the release.</span>
Answer:
Input force of pulley system = 200 N
Explanation:
Given:
Mechanical advantage of pulley system = 5
Output force from pulley system = 1,000 N
Find;
Input force of pulley system
Computation:
Mechanical advantage = Output force / Input force
Mechanical advantage of pulley system = Output force from pulley system / Input force of pulley system
5 = 1,000 / Input force of pulley system
Input force of pulley system = 1,000 / 5
Input force of pulley system = 200 N
The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
To find the answer, we have to know about the Lorentz transformation.
<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>
It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.

- Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,

- So, to
find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame. - We have an expression from Lorents transformation for relativistic law of addition of velocities as,

- Substituting values, we get,


Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
Learn more about frame of reference here:
brainly.com/question/20897534
SPJ4
A=Fh
A - work
F - force
h - distance
F=mg
m - mass (god+basket)
so
A=mgh
187 = m*10*4
187=40m
m=187/40
m=4.675 kg
or 4kg and 675g
pretty small dog...