1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
3 years ago
12

Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.

Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges.(1)What is the electric potential at point a due to q1 and q2?
(2)What is the electric potential at point b?

(3)A point charge q3 = -2.00 μC moves from point a to point b. How much work is done on q3 by the electric forces exerted by q1 and q2?
Physics
1 answer:
8_murik_8 [283]3 years ago
4 0

The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

V = \frac{1}{4\pi\epsilon_0}\frac{q}{r}

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

V_a = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

The distance from the center of the square to one of the corners is \sqrt2 L/2 = 0.035m

V_a = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.035} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.035} = 0

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.

2) V_b = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

r_1 = 0.05\sqrt2m\\r_2 = 0.05m

V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between  energies. This is the work-energy theorem. So,[tex]W = U_b - U_a

U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_3}{r} = Vq_3

W = q_3(V_b - V_a) = q_3(V_b - 0)\\W = (-2\times10^{-6})(-\frac{2.9\times10^{-6}}{\pi\epsilon_0})\\W = \frac{5.8\times10^{-12}}{\pi\epsilon_0}

You might be interested in
If a 70-kg swimmer pushed off a pool wall with a force of 250N at what rate will the swimmer accelerate from the wall
Vlad [161]
F = ma
250 = 70 x a
a = 250/70
a = 3.57
5 0
3 years ago
If a cart is accelerating downhill under a net force of 25 N, what additional force would cause the cart to have a constant velo
Vladimir [108]
No additional force is required because it's already going downhill
7 0
3 years ago
Does potential energy increase,kinetic energy decrease when a book is placed on a shelf
DerKrebs [107]
Yes potential increases while kinetic decreases
3 0
3 years ago
What is the energy (in evev) of a photon of visible light that has a wavelength of 500 nmnm?
lisabon 2012 [21]
<h3>Answer:</h3>
  • E≈2,5 eV
<h3>Explanation:</h3>

_______________

λ=500 nm = 500·10⁻⁹ m

c=3·10⁸ m/s

h=6,63·10⁻³⁴ J·s = 4,14·10⁻¹⁵ eV·s

_______________

E - ?

_______________

\displaystyle \boldsymbol{E}=h\nu =h \frac{c}{\lambda} =4,14\cdot 10^{-15} \; eV\cdot s\cdot \; \frac{3\cdot 10^8\; m/s}{500\cdot 10^{-9}\; m} =2,484\;  eV\approx \boldsymbol{2,5\; eV}

6 0
2 years ago
A -3.00 nc point charge is at the origin, and a second -5.50 nc point charge is on the x-axis at x = 0.800 m. find the electric
Liula [17]

The electric field produced by a single-point charge is given by

E(r)=k\frac{q}{r^2}

where

k is the Coulomb's constant

q is the charge

r is the distance from the charge


To find the electric field at x=0.200 m, we need to find the electric field produced by each charge at that point, and then find their resultant.


1) The first charge is q=-3.00 nC=-3.00 \cdot 10^{-9} C, and it is located at x=0, so its distance from the point x=0.200 m is

r=0.200 m-0=0.2 m

Therefore, the electric field is

E_1=(8.99 \cdot 10^9 Nm^2C^{-2})\frac{(3.0 \cdot 10^{-9} C)}{(0.2 m)^2}=675 N/C

And since the charge is negative, the direction of the field is toward the charge, so toward negative x direction.


2) The second charge is q=-5.50 nC=-5.5 \cdot 10^{-9}C and it is located at x=0.800 m, so its distance from the point is

r=0.800 m-0.200 m=0.6 m

Therefore, the electric field is

E_2 = (8.99 \cdot 10^9 Nm^2C^{-2})\frac{(5.5 \cdot 10^{-9} C)}{(0.6 m)^2}=137.5 N

And since the charge is negative, the direction of the field is toward the charge, so toward positive x-direction.


3) The total electric field at x=0.200 m will be given by the difference between the two fields (because they are in opposite directions). Taking the x-positive direction as positive direction, we have

E=E_2 -E_1 =137.5 N/C/C-675 N/C=-537.5 N/C

and the sign tells us that the field is directed toward negative x-direction.

7 0
3 years ago
Other questions:
  • a 4.0 kg ball is attached to 0.70 m string and spun at 2.0 m/s. what is the centripetal acceleration ?
    5·2 answers
  • How to make green colour with two colours?
    10·2 answers
  • The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm(red) and 486 nm (blue). Light fr
    9·1 answer
  • A person standing at the edge of a seaside cliff kicks a stone horizontally over the edge with a speed of 18 m/s. The cliff is 5
    11·1 answer
  • A proton (mass m = 1.67 × 10-27 kg) is being accelerated along a straight line at 2.50 × 1012 m/s2 in a machine. If the proton h
    7·1 answer
  • Anyone know this lmk ASAP !!!
    6·1 answer
  • Two water balloons of mass 0.75 kg collide and bounce off of each other without breaking. Before the collision, one water balloo
    6·1 answer
  • A wave with a large amplitude has a lot of             a.vibration  b.speed   c.energy    
    13·2 answers
  • PLEASE HELP ME WITH THIS ONE QUESTION
    11·1 answer
  • Hurry up.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!