Answer:
Relative to the ground, the velocity of the aircraft is 240 km/hr
Explanation:
Relative velocity is different from normal velocity;
When 2 objects are moving in opposite directions towards each other, they will appear to be faster than they actually are;
This is known as the relative velocity;
The information tells us we have the aircraft moving 320 km/hr northwards relative to the wind;
The wind is in the opposite direction at 80 km/hr;
R = relative velocity of the aircraft
v = actual velocity of the aircraft
w = velocity of the wind
R = v + w
Note: if the wind was moving in the same direction, the formula would be R = v - w
320 = v + 80
v = 320 - 80
v = 240
The velocity relative to the ground is simply the actual velocity as the ground doesn't move;
So, relative to the ground, the velocity of the aircraft is simply 240 km/hr
Answer:
The angle between the blue beam and the red beam in the acrylic block is

Explanation:
From the question we are told that
The refractive index of the transparent acrylic plastic for blue light is 
The wavelength of the blue light is 
The refractive index of the transparent acrylic plastic for red light is 
The wavelength of the red light is 
The incidence angle is 
Generally from Snell's law the angle of refraction of the blue light in the acrylic block is mathematically represented as
![r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_F%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.497%7D%20%5D)

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as
![r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_C%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.488%7D%20%5D)

The angle between the blue beam and the red beam in the acrylic block

substituting values


Answer:
you start sweating and it would get hot
1) 29.8 C
At the beginning, the metal is at higher temperature (70.4 C) while the water is at lower temperature (23.6 C). When they are put in contact, the metal transfers heat to the water, until they reach thermal equilibrium: at thermal equilibrium the two objects (the metal and the water have same temperature). Therefore, since the temperature of the water at thermal equilibrium is 29.8 C, the final temperature of the metal must be the same (29.8 C).
2) 6.2 C
The temperature change of the water is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the positive sign means that the temperature of the water has increased.
3) -40.6 C
The temperature change of the metal is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the negative sign means the temperature of the metal has decreased.
Answer:
The ecosystem that he should consider is the tropical rain forest ecosystem.
Explanation:
In that area, there are uncountable amounts of various plants and animals that have not all yet been discovered and who all live together to build the biome. This biome is indeed the most diverse one even at this point without the knowledge of all possible life forms.